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Reminders

Let K ⊂ L be a field extension, and let α ∈ L.
Write K [α] = {F (α) | F (x) ∈ K [x ]} for the subring generated
by K and α, and K (α) for the subfield generated by K and α.

Iα = {F (x) ∈ K [x ] | F (α) = 0} is an ideal of K [x ]. We say
that α is algebraic over K if Iα ̸= {0}; as K [x ] is a PID, we
then have Iα = (P(x)) for a unique monic P(x) ∈ K [x ], the
minimal polynomial of α, which is irreducible over K .

Besides, we then have

K [α] = K (α) =
d−1⊕
j=0

Kαj (d = degP),

so [K (α) : K ] = d .
Indeed, let 0 ̸= F (α) ∈ K [α]; then F (x) and P(x) are
coprime, so (Bézout) there exist U(x),V (x) ∈ K [x ] such that
U(x)F (x) + V (x)P(x) = 1, so 1/F (α) = U(α) ∈ K [α].
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Stem fields,
splitting fields
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Stem fields, splitting fields

Let K be a field.

Definition (Stem field)

Let P(x) ∈ K [x ] irreducible. A stem field of P over K is an
extension K ⊆ L containing a root α ∈ L of P(x) and such
that L = K (α) (minimality).

Definition (Splitting field)

Let F (x) ∈ K [x ]. A splitting field of F over K is an extension

K ⊆ L containing α1, · · · , αd such that F (x) =
∏d

j=1(x − αj)
and such that L = K (α1, · · · , αd) (minimality).

Existence? Uniqueness?
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Stem fields, splitting fields
Definition (Stem field)

Let P(x) ∈ K [x ] irreducible. A stem field of P over K is an
extension K ⊆ L containing a root α ∈ L of P(x) and such
that L = K (α) (minimality).

Definition (Splitting field)

Let F (x) ∈ K [x ]. A splitting field of F over K is an extension

K ⊆ L containing α1, · · · , αd such that F (x) =
∏d

j=1(x − αj)
and such that L = K (α1, · · · , αd) (minimality).

Example

Let K = Q and P(x) = x3 − 2, whose roots in C are α = 3
√
2,

β = ζ 3
√
2, and γ = ζ2 3

√
2, where ζ = e2πi/3 (so ζ3 = 1).

Then Q(α) is a stem field of P(x) over Q, but not a splitting
field, e.g. because Q(α) ⊂ R whereas β, γ ̸∈ R.
A splitting field of P(x) is Q(α, β, γ) = Q( 3

√
2, ζ).

Existence? Uniqueness?
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Stem fields, splitting fields

Let K be a field.
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Stem fields: existence

Theorem

Let P(x) ∈ K [x ] irreducible. Then L = K [x ]/
(
P(x)

)
is a stem

field of P over K .

Proof.

L is a field: Let 0 ̸= F (x) ∈ L. Then P(x) ∤ F (x), so they are
coprime, so there are U ,V ∈ K [x ] such that UF + VP = 1.
Then U(x) is an inverse of F (x).

Extension of K : if k ̸= k ′ ∈ K , then k ̸= k ′ ∈ L.

Stem field: let α = x ∈ L. Then P(α) = P(x) = 0 ∈ L, and
clearly L = K (α).

Remark

The quotient ring K [x ]/
(
F (x)

)
is a field iff. F (x) is

irreducible over K (compare with Z/nZ).
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K -morphisms

Definition

Let K be a field, and let K ⊂ L, K ⊂ M be extensions of K .
A K -morphism from L to M is a morphism f : L −→ M such
that f|K = IdK , i.e. f (k) = k for all k ∈ K .
Notation: HomK (L,M).
Similarly define K -isomorphisms and K -automorphisms.

Remark

Ring morphisms between fields are always injective, and always
respect inverses: f (l)f (l−1) = f (ll−1) = 1.

Remark

AutK (L) is a subgroup of Aut(L).
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Stem fields: uniqueness

Theorem

Let P(x) ∈ K [x ] irreducible. Stem fields of P(x) over K are
unique up to K -isomorphism.

Proof.

Let L = K (α) be a stem field of P , where P(α) = 0. The
isomorphism theorem applied to

evα : K [x ] −→ L
F (x) 7−→ F (α)

yields K [x ]/Ker evα ≃ Im evα.
But Ker evα = Iα =

(
P(x)

)
, and Im evα = K [α] = K (α) = L

by minimality.
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Stem fields: uniqueness

Theorem

Let P(x) ∈ K [x ] irreducible. Stem fields of P(x) over K are
unique up to K -isomorphism.

Example

Let K = Q, P(x) = x3 − 2, α = 3
√
2, β = ζ 3

√
2, and

γ = ζ2 3
√
2 (ζ = e2πi/3). Then

Q[x ]/(x3 − 2) ≃Q Q(α) ≃Q Q(β) ≃Q Q(γ).

Example

Let K = R, P(x) = x2 + 1. Then

R[x ]/(x2 + 1) ≃R C = R(i) ≃R C = R(−i).
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Splitting fields: existence

Theorem

Let F (x) ∈ K [x ]. A splitting field of F (x) over K exists.

Proof.

If F (x) already splits into linear factors over K , we are done.
Else, take an irreducible factor P(x) of degree ≥ 2 of F (x),
and start over with L = K [x ]/

(
P(x)

)
instead of K and

F (x)/(x − α) instead of F (x), where α = x ∈ L.
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Splitting fields: existence

Example (Splitting field of x3 − 2 over Q)

Take K = Q, F (x) = x3 − 2 over Q.
Since F (x) is irreducible over K , first enlarge K
into L = K [x ]/(x3 − 2) = K (α), where α = x ∈ L.
We compute F (y)/(y − α) = y 2 + αy + α2

⇝ factorisation F (y) = (y − α)(y 2 + αy + α2) over L.
Two alternatives: If y 2 + αy + α2 splits over L, then L is a
splitting field of F , so done; else, must further enlarge L.
Actually, y 2 + αy + α2 is irreducible over L because
∆ = −3α2 is not a square in L (embed in R),
⇝ M = L[y ]/(y 2 + αy + α2). Then y 2 + αy + α2 has a root
in M , so splits completely over M , so
M = L[y ]/(y 2+αy +α2) =

(
K [x ]/(x3−2)

)
[y ]/(y 2+ xy + x2)

= Q[x , y ]/(x3 − 2, y 2 + xy + x2) is a splitting field of F (x)
over Q. The roots are x , y , and −x − y .
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Extension of automorphisms to splitting fields

Lemma

Let σ : K1 ≃ K2 be a field isomorphism.
Let F1(x) ∈ K1[x ], and F2(x) = F σ

1 (x) ∈ K2[x ].
Finally, for i = 1, 2, let Li be a splitting field of Fi(x) over Ki .
Then there exists τ : L1 ≃ L2 such that τ|K1

= σ.

Proof.

Induction on [L1 : K1].

If [L1 : K1] = 1, then L1 = K1, so F1(x) =
∏

j(x − αj)

with αj ∈ K1. So F2(x) =
∏

j

(
x − σ(αj)

)
∈ K2[x ],

so L2 = K2 ⇝ take τ = σ.
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Extension of automorphisms to splitting fields

Proof.

If [L1 : K1] > 1, then F1(x) not totally split over K1, so has
irreducible factor P1(x) ∈ K1[x ]. Let P2(x) = Pσ

1 (x) ∈ K2[x ],
and for i = 1, 2, let αi ∈ Li be a root of Pi(x), and let
Ei = Ki(αi) ⊆ Li . Then Ei is a stem field of Pi(x) over Ki , so

E1 = K1(α1) ≃K1 K1[x ]/
(
P1(x)

) σ≃ K2[x ]/
(
P2(x)

)
≃K2 K2(α2) = E2

⇝ σ′ : E1 ≃ E2 extending σ.

By tower law, [L1 : E1] = [L1 : K1]/[E1 : K1] < [L1 : K1]
⇝ induction.
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Extension of automorphisms to splitting fields

Lemma

Let σ : K1 ≃ K2 be a field isomorphism.
Let F1(x) ∈ K1[x ], and F2(x) = F σ

1 (x) ∈ K2[x ].
Finally, for i = 1, 2, let Li be a splitting field of Fi(x) over Ki .
Then there exists τ : L1 ≃ L2 such that τ|K1

= σ.

Corollary (Uniqueness of splitting fields)

Let F (x) ∈ K [x ]. Splitting fields of F (x) over K are unique up
to K -isomorphism.

Proof.

Apply lemma with K1 = K2 = K and σ = Id.
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Algebraic closure (proofs omitted)

Theorem (Steinitz)

Let K be any field. There exists an extension K ⊂ K such
that every F (x) ∈ K [x ] splits over K , and which is algebraic
over K (minimality). It is unique up to K -isomorphism.

Example

R = C.

Counter-example

Q is not C (not algebraic ⇝ too large), but

{α ∈ C | α algebraic over Q}.

Remark

It may be shown that every F (x) ∈ K [x ] splits over K .
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Galois conjugacy
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K -morphisms and roots

Lemma

Let K be a field, F (x) ∈ K [x ], L,M extensions of K ,
and σ : L −→ M a K -morphism.
If α ∈ L a root of F , then σ(α) ∈ M is also a root of F .

Proof.

Write F (x) =
∑

j kjx
j with kj ∈ K . Then

0 = σ(0) = σ
(
F (α)

)
= σ

(∑
j

kjα
j

)

=
∑
j

σ(kj)σ(α)
j =

∑
j

kjσ(α)
j = F

(
σ(α)

)
.
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K -morphisms and roots

Lemma

Let K be a field, F (x) ∈ K [x ], L,M extensions of K ,
and σ : L −→ M a K -morphism.
If α ∈ L a root of F , then σ(α) ∈ M is also a root of F .

Example

Let σ ∈ Aut(C) be complex conjugation. As σ ∈ AutR(C), the
set of complex roots of any F (x) ∈ R[x ] is stable by σ.
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Galois conjugacy

Theorem

Let F (x) ∈ K [x ], L a splitting field of F (x) over K ,
and α, β ∈ L. TFAE:

α and β have the same minimal polynomial over K ,

There exists σ ∈ AutK (L) such that σ(α) = β.

Proof.

⇓: K1 = K (α) and K2 = K (β) are stem fields of P over K
⇝ K -isomorphism σ : K (α) ≃K K (β) sending α to β,
which extends to τ ∈ Aut(L).

⇑: Let P(x) ∈ K [x ] min poly of α. Then P(α) = 0,
so P(β) = 0 as well by lemma.
⇝ min poly of β over K divides P , so = P
(irr+monic).

Example

The conjugates of α = 3
√
2 over Q are α itself, β = ζ 3

√
2, and

γ = ζ2 3
√
2 (ζ = e2πi/3).

So there exist Q-automorphisms of L = Q( 3
√
2, ζ) which

permute α, β, γ transitively.
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Galois conjugacy

Theorem
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Galois conjugacy

Example (Complex conjugacy as Galois conjugacy)

Take K = R, F (x) = x2 + 1 ⇝ L = C, and let α ∈ C.

As R ⊆ R(α) ⊆ C, α is algebraic over R of degree ≤ 2.

If α ∈ R, then its min poly over R is x − α, so the only
R-conjugate of α is α itself.

If α ̸∈ R, then its min poly over R must be (x − α)(x − α), so
the R-conjugates of α are α and α.
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Finite fields 1/4:
Characteristic
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The characteristic of a ring

Definition (Characteristic of a ring)

Let R be a ring. Its characteristic is the c ∈ Z≥0 such that

iR : Z −→ R
n 7−→ 1 + · · ·+ 1︸ ︷︷ ︸

n timessatisfies Ker iR = cZ.

In other words, charR is the smallest c ∈ N such
that 1 + · · ·+ 1︸ ︷︷ ︸

c times

= 0 in R , or 0 if there is no such c .

Example

charZ/mZ = m.
charQ[x ] = 0.
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The characteristic of a ring

Definition (Characteristic of a ring)

Let R be a ring. Its characteristic is the c ∈ Z≥0 such that

iR : Z −→ R
n 7−→ 1 + · · ·+ 1︸ ︷︷ ︸

n timessatisfies Ker iR = cZ.

In other words, charR is the smallest c ∈ N such
that 1 + · · ·+ 1︸ ︷︷ ︸

c times

= 0 in R , or 0 if there is no such c .

Remark

For all x ∈ R , (charR)x = (1 + · · ·+ 1︸ ︷︷ ︸
charR times

)x = 0x = 0.

Remark

If R is finite, then charR ̸= 0 since iR cannot be injective.
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The characteristic of a domain

Proposition

If R is a domain, then charR is either 0 or a prime number.

Proof.

Suppose charR = ab with a, b < charR . Then

0 = 1 + · · ·+ 1︸ ︷︷ ︸
ab times

= (1 + · · ·+ 1︸ ︷︷ ︸
a times

)(1 + · · ·+ 1︸ ︷︷ ︸
b times

)

but 1 + · · ·+ 1︸ ︷︷ ︸
a times

̸= 0 and 1 + · · ·+ 1︸ ︷︷ ︸
b times

̸= 0 in R .

Remark

charQ = 0.
charZ/pZ = p.
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The prime subfield

Definition (Prime subfield)

Let K be a field. The prime subfield of K is the smallest
subfield of K , i.e. that generated by 0 and 1.

Example

The prime subfield of R is Q.

Proposition

Let K be a field.

If charK = 0, then K contains a copy of Q.

If charK = p, then K contains a copy of Z/pZ.

Proof.

Consider the prime subfield of K .
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The cardinal of a finite field

Theorem

If K is a finite field, then there exists d ∈ N such
that #K = pd , where p = charK .

Proof.

We know that K is a finite extension of Z/pZ.
Let d = [K : Z/pZ]. Then K ≃ (Z/pZ)d as (Z/pZ)-vector
spaces; in particular, they have the same cardinal.

Example

There does not exist a field with 6 elements.
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An identity in finite fields

Lemma

Let K be a finite field with q elements. Then kq = k for all
k ∈ K .

Proof.

If k = 0, OK.
Else, k ∈ K×, which is a group of order q − 1, so kq−1 = 1 by
Lagrange.
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Finite fields 2/4:
Frobenius
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The Frobenius morphism

Proposition

Let R be a commutative ring such that charR is a prime
number p. Then

(a + b)p = ap + bp

for all a, b ∈ R .

Proof.

Since (a + b)p =
∑p

k=0

(
p
k

)
akbp−k , if suffices to prove

that p |
(
p
k

)
for 0 < k < p. And indeed p | p! =

(
p
k

)
k!(p − k)!,

but p ∤ k! nor (p − k)!.
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The Frobenius morphism

Proposition

Let R be a commutative ring such that charR is a prime
number p. Then

(a + b)p = ap + bp

for all a, b ∈ R .

Corollary (Frobenius map)

If charR = p, then the Frobenius map

Frob :
R −→ R
r 7−→ rp

is a ring morphism.
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The Frobenius morphism

Corollary (Frobenius map)

If charR = p, then the Frobenius map

Frob :
R −→ R
r 7−→ rp

is a ring morphism.

Example

Take R = Z/pZ. Then Frob(a) = ap = a for all a ∈ R , so
Frob = Id.
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The Frobenius morphism

Corollary (Frobenius map)

If charR = p, then the Frobenius map

Frob :
R −→ R
r 7−→ rp

is a ring morphism.

Example

Take R = (Z/pZ)[x ], and let F (x) =
∑

j fjx
j ∈ R . Then

Frob(F (x))
def
=

(∑
j

fjx
j

)p

=
∑
j

f pj (x
j)p =

∑
j

fjx
pj

so Frob : F (x) 7−→ F (xp).
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Finite fields 3/4:
Structure theorems
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Finite multiplicative subgroups in fields

Lemma

Let K be a field, and G ≤ K× a finite subgroup. Then G is cyclic.

Proof (Non-examinable).

Let n = #G , and for all d | n, let ψ(d) be the number of
elements of G of order exactly d .
Claim: ψ(d) ≤ ϕ(d) for all d .
If ψ(d) = 0 OK. Else, let h ∈ G have order d , and let
H = ⟨h⟩ ≤ G , so H ≃ Z/dZ. For all k ∈ H , kd = 1 by
Lagrange. But xd − 1 has at most d roots in the field K
⇝ for all x ∈ K , xd = 1 =⇒ x ∈ H .
⇝ ψ(d) = ϕ(d) if ψ(d) ̸= 0.

Thus n =
∑
d |n

ψ(d) ≤
claim

∑
d |n

ϕ(d) = n

⇝ ψ(d) = ϕ(d) for all d . In particular, ψ(n) = ϕ(n) ≥ 1.
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Summary of results so far

Theorem

Let K be a finite field with q elements.
Then q = pd where p = charK is prime, K ⊇ Z/pZ,
and d = [K : Z/pZ].
Besides,

(K ,+) ≃ (Z/pZ)d ,

(K×,×) ≃ Z/(q − 1)Z,

and Frob ∈ AutZ/pZ(K ).
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Summary of results so far

Theorem

Let K be a finite field with q elements.
Then q = pd where p = charK is prime, K ⊇ Z/pZ,
and d = [K : Z/pZ].
Besides,

(K ,+) ≃ (Z/pZ)d ,

(K×,×) ≃ Z/(q − 1)Z,

and Frob ∈ AutZ/pZ(K ).

Corollary (Primitive element theorem for finite fields)

If K ⊆ L are finite fields, then L = K (α) for some α ∈ L.
In particular, L ≃K K [x ]/

(
mα(x)

)
, where mα(x) ∈ K [x ] is the

minimal polynomial of α over K .
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Summary of results so far

Corollary (Primitive element theorem for finite fields)

If K ⊆ L are finite fields, then L = K (α) for some α ∈ L.
In particular, L ≃K K [x ]/

(
mα(x)

)
, where mα(x) ∈ K [x ] is the

minimal polynomial of α over K .

Proof.

Take α ∈ L to be a generator of the cyclic group L×.
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Fundamental theorem of finite fields

Theorem

The number of elements of a finite field is a prime power.
Conversely, for each prime power q = pd , there exists a
finite field with q elements.

Two finite fields with the same number of elements are
isomorphic.

Let K and L be two finite fields. Then L contains a copy
of K iff. #L is a power of #K .

The first two points justify the notation Fq for “the” finite
field with q elements.

Example

Fp = Z/pZ.
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Fixed points of field morphisms

Lemma

Let K be a field, and σ : K −→ K be a field morphism.
Then {α ∈ K | σ(α) = α} is a subfield of K .

Proof.

Routine.

Nicolas Mascot Galois theory



Fundamental theorem of finite fields : proof (1/3)

Suppose q = pd is a prime power. Let Fp be an algebraic
closure of Fp = Z/pZ, and let

Zq = {α ∈ Fp | αq = α}.

Claim: Zq is a subfield of Fp with q elements.
Indeed, since Φq = Frob ◦ · · · ◦ Frob︸ ︷︷ ︸

d times

: x 7−→ xq is a field

morphism, Zq is a subfield of Fp.
Besides, let F (x) = xq − x ∈ Fp[x ]. It has all its roots in Fp;
and since F ′(x) = qxq−1 − 1 = −1 as p = 0 ∈ Fp,
gcd(F ,F ′) = 1, so F has no repeated roots ⇝ #Zq = q.
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Fundamental theorem of finite fields : proof (2/3)

Suppose now that M is another field with q elements.

Then M = Fp(α) for some α ∈ M ; let mα(x) ∈ Fp[x ] be its
minimal polynomial, and let β ∈ Fp be a root of mα(x).

As Fp(α) = M and Fp(β) ⊆ Fp are stem fields of mα(x), they
are isomorphic.
Besides, #Fp(β) = #M = q, so γq = γ for all γ ∈ Fp(β), so
Fp(β) ⊆ Zq; and actually Fp(β) = Zq by cardinals.
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Fundamental theorem of finite fields : proof (3/3)

Let K and L be finite fields with #K = q = pd

and #L = q′ = p′d
′
.

If K ⊆ L, then #L = #K [L:K ], so p′ = p and d | d ′.

Conversely, suppose that p′ = p and d | d ′.
Then Zq ⊆ Zq′ in Fp.
But up to isomorphism, K = Zq, and L = Zq′ .

Example

F4 and F8 are both extensions of F2 = Z/2Z, but F8 does not
contain any copy of F4!

In fact, the smallest finite field containing both a copy of F4

and a copy of F8 is F64.
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Finite fields 4/4:
Explicit construction

Nicolas Mascot Galois theory



Construction of finite fields

Let q = pd be a prime power. We know that Fq exists, and is
an extension of Fp of degree d
⇝ Fq = Fp(α) for some α ∈ Fq

⇝ mα(x) ∈ Fp[x ] is irreducible of degree d .

Conversely, if P(x) ∈ Fp[x ] is any irreducible polynomial of
degree d , then

Fp[x ]/
(
P(x)

)
is a finite field with pd = q elements.
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Example: small extensions of F2

We have F2 ≃ Z/2Z.

To construct F4, we need P(x) ∈ F2[x ] irreducible of deg 2.
A polynomial of degree 2 is irreducible iff. it has no roots, and
the only possible roots are {0, 1} = F2

⇝ P(x) = x2 + x + 1 (only choice!)

⇝ F4 ≃ F2[x ]/(x
2 + x + 1).

To construct F8, we need Q(x) ∈ F2[x ] irreducible of deg 3.
A polynomial of degree 3 is irreducible iff. it has no roots.
⇝ Q(x) = x3 + x + 1 (other choice: x3 + x2 + 1)

⇝ F8 ≃ F2[x ]/(x
3 + x + 1).
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Example: small extensions of F2

To construct F4, we need P(x) ∈ F2[x ] irreducible of deg 2.
⇝ P(x) = x2 + x + 1 (only choice!)

⇝ F4 ≃ F2[x ]/(x
2 + x + 1).

To construct F8, we need Q(x) ∈ F2[x ] irreducible of deg 3.

⇝ F8 ≃ F2[x ]/(x
3 + x + 1).

To construct F16, we need R(x) ∈ F2[x ] irreducible of deg 4.
A polynomial of degree 4 is irreducible iff. it has no roots and
is not the product of two irreducibles of degree 2.
The only product of irreducibles of degree 2 is

(x2 + x + 1)2 = (x2)2 + x2 + 12 = x4 + x2 + 1.

⇝ can take R(x) = x4 + x + 1 (there are other choices)

⇝ F16 ≃ F2[x ]/(x
4 + x + 1).
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Polynomials and their roots
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Symmetric polynomials

Fix n ∈ N, and let K be a field.

Definition

A polynomial F (x1, · · · , xn) ∈ K [x1, · · · , xn] is symmetric if it
is invariant under any permutation of the variables x1, · · · , xn.

Example (n = 3)

x21 + x22 + x23 is a symmetric polynomial.
x21x2 + x22x3 + x23x1 is not.
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Elementary symmetric polynomials

Definition

The elementary symmetric polynomials in n variables are

σ1 = x1 + x2 + · · ·+ xn,
...

σj =
∑

I⊆{1,··· ,n}
#I=j

∏
i∈I

xi ,
...

σn = x1x2 · · · xn.

Example

For n = 4, the elementary symmetric polynomials are

σ1 = x1 + x2 + x3 + x4,
σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,
σ3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,
σ4 = x1x2x3x4.
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Fundamental theorem on symmetric polynomials

Theorem (Proof omitted)

Let K be a field, and let F (x1, · · · , xn) ∈ K [x1, · · · , xn]. Then
F is symmetric ⇐⇒ F is a polynomial in σ1, · · · , σn with
coefficients in K .

Remark

⇐= is obvious.

Example (n = 3)

F = x21 + x22 + x23 is symmetric, so it can be expressed in terms
of σ1, σ2, σ3. Indeed,
σ2
1 = (x1 + x2 + x3)

2 = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 = F + 2σ2

⇝ F = σ2
1 − 2σ2.
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Relations between coefficients and roots

Theorem (Vieta)

Let F (x) = xn + a1x
n−1 + · · ·+ an−1x + an ∈ K [x ] have roots

α1, · · · , αn ∈ K . Then aj = (−1)jσj(α1, · · · , αn) for all j .

Proof.

Expand F (x) =
∏n

j=1(x − αj).
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Relations between coefficients and roots

Theorem (Vieta)

Let F (x) = xn + a1x
n−1 + · · ·+ an−1x + an ∈ K [x ] have roots

α1, · · · , αn ∈ K . Then aj = (−1)jσj(α1, · · · , αn) for all j .

Corollary

We can read the value of any symmetric polynomial in the
roots of F (x) off its coefficients aj , even if we do not know
these roots.

Example

Let F (x) = x3 − x2 + 2x + 8 have roots α1, α2, α3. Then we
have σ1 = α1 + α2 + α3 = 1, σ2 = α1α2 + α1α3 + α2α3 = 2,
and σ3 = α1α2α3 = −8.
Therefore, α2

1 + α2
2 + α2

3 = σ2
1 − 2σ2 = −3.
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Relations between coefficients and roots

Theorem (Vieta)

Let F (x) = xn + a1x
n−1 + · · ·+ an−1x + an ∈ K [x ] have roots

α1, · · · , αn ∈ K . Then aj = (−1)jσj(α1, · · · , αn) for all j .

Corollary

We can read the value of any symmetric polynomial in the
roots of F (x) off its coefficients aj , even if we do not know
these roots.

Example

Let F (x) = x3 − x2 + 2x + 8 have roots α1, α2, α3.
In contrast, we cannot evaluate α2

1α2 + α2
2α3 + α2

3α1 that way.
In fact, this value depends on the ordering of the roots!
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Relations between coefficients and roots

Theorem (Vieta)

Let F (x) = xn + a1x
n−1 + · · ·+ an−1x + an ∈ K [x ] have roots

α1, · · · , αn ∈ K . Then aj = (−1)jσj(α1, · · · , αn) for all j .

Corollary

We can read the value of any symmetric polynomial in the
roots of F (x) off its coefficients aj , even if we do not know
these roots.

Corollary

The value of any symmetric polynomial in the roots with
coefficients in K lies in K .
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Resultants
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Resultant: definition

Definition (Resultant of two polynomials)

Let R be a commutative ring. The resultant of
A =

∑m
j=0 ajx

j ∈ R[x ] and B =
∑n

k=0 bkx
k ∈ R[x ] is

the (m + n)× (m + n) determinant

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 · · · a0 0 · · · 0

0 am am−1 · · · a0
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 am am−1 · · · a0
bn bn−1 · · · b0 0 · · · 0

0 bn bn−1 · · · b0
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 bn bn−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ R

(n rows of A, m rows of B).
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Resultant: definition

Example

Res(x2 − 2, x2 + 1) =

∣∣∣∣∣∣∣∣
1 0 −2 0
0 1 0 −2
1 0 1 0
0 1 0 1

∣∣∣∣∣∣∣∣ = 9.
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Resultant: properties

Theorem (Proof admitted)

Let K be a field, and A(x),B(x) ∈ K [x ].
If we have (over K or an extension)

A = a

degA∏
j=1

(x − αj) and B = b

degB∏
k=1

(x − βk), then

Res(A,B) = adegB
degA∏
j=1

B(αj) = adegBbdegA
degA∏
j=1

degB∏
k=1

(αj − βk)

= (−1)degA degBbdegA
degB∏
k=1

A(βk) = (−1)degA degB Res(B ,A).

Example (K = Q)

Let A = x2 − 2 = (x −
√
2)(x +

√
2), B = x2 + 1 = (x − i)(x + i). Then

Res(A,B) = B(
√
2)B(−

√
2) = A(i)A(−i)

= (
√
2− i)(

√
2 + i)(−

√
2− i)(−

√
2 + i) = 9.
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Resultant: properties

Theorem (Proof admitted)

Let K be a field, and A(x),B(x) ∈ K [x ].
If we have (over K or an extension)

A = a

degA∏
j=1

(x − αj) and B = b

degB∏
k=1

(x − βk), then

Res(A,B) = adegB
degA∏
j=1

B(αj) = adegBbdegA
degA∏
j=1

degB∏
k=1

(αj − βk)

= (−1)degA degBbdegA
degB∏
k=1

A(βk) = (−1)degA degB Res(B ,A).

Corollary

Res(A,B) = 0 ⇐⇒ A and B have a common root in K ⇐⇒
A and B have a common nontrivial factor over K .
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Application: preservation of algebraicness

Theorem

Let K ⊆ L be fields, and let α, β ∈ L. If α and β are algebraic
over K , then so are α + β, α− β, αβ, and α/β (β ̸= 0).

Non-constructive proof.

α, β alg. / K ⇝ minpoly A(x),B(x) ∈ K [x ]. Then
[K (α) : K ] = degA <∞, and [K (α, β) : K (α)] ⩽ degB <∞
since the minpoly of β over K (α) divides B(x).
By tower law, [K (α, β) : K ] <∞, so K (α, β) is an algebraic
extension of K .
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Application: preservation of algebraicness

Theorem

Let K ⊆ L be fields, and let α, β ∈ L. If α and β are algebraic
over K , then so are α + β, α− β, αβ, and α/β (β ̸= 0).

Constructive proof with resultants.

α, β alg. / K ⇝ minpoly A(x),B(x) ∈ K [x ]. Factor (over L)

A(x) =
m∏
j=1

(x − αj), B(x) =
n∏

k=1

(x − βk),

where α = α1 and β = β1, and view A(y),B(x − y) ∈ K [x ][y ].
Then C (x) = Res

(
A(y),B(x − y)

)
∈ K [x ] satisfies

C (x) =
m∏
j=1

B(x−y)|y=αj
=

m∏
j=1

B(x−αj) =
m∏
j=1

n∏
k=1

(x−αj−βk),

so α + β root of C (x) ⇝ algebraic / K .
Same idea for α− β, αβ and α/β.
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Application: preservation of algebraicness

Theorem

Let K ⊆ L be fields, and let α, β ∈ L. If α and β are algebraic
over K , then so are α + β, α− β, αβ, and α/β (β ̸= 0).

Example

α =
√
2, β =

√
3 algebraic / Q ⇝ α + β algebraic / Q.

More specifically, since A(x) = x − 2 and B(x) = x − 3,
α + β is a root of

Resy (y
2 − 2, (x − y)2 − 3) = Resy (y

2 − 2, y 2 − 2xy + x2 − 3)

=

∣∣∣∣∣∣∣∣
1 0 −2 0
0 1 0 −2
1 −2x x2 − 3 0
0 1 −2x x2 − 3

∣∣∣∣∣∣∣∣
= x4 − 10x2 − 1 ∈ Q[x ].
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Application: preservation of algebraicness

Theorem

Let K ⊆ L be fields, and let α, β ∈ L. If α and β are algebraic
over K , then so are α + β, α− β, αβ, and α/β (β ̸= 0).

Example

A = {α ∈ C | α algebraic over Q}

is a subfield of C (⇝ A = Q is the algebraic closure of Q).
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Discriminants
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Reminder on multiple roots

Let K ⊆ L be fields, F (x) ∈ K [x ], and α ∈ L.

Lemma

F (α) = 0 ⇐⇒ F (x) = (x − α)G (x) for some G (x) ∈ L[x ].

Proof.

Euclidean-divide F (x) by x − α in L[x ]:

F (x) = (x − α)Q(x) + R(x)

where degR < deg(x − α) so R is constant.

Evaluate at x = α⇝ R = F (α).
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Reminder on multiple roots

Let K ⊆ L be fields, F (x) ∈ K [x ], and α ∈ L.

Definition (Multiple root)

α is a multiple root of F (x) if F (x) = (x − α)2H(x) for
some H(x) ∈ L[x ].

Proposition (Derivatives detect multiple roots)

Let α ∈ L be a root of F (x). Then

α is a multiple root of F (x) ⇐⇒ F ′(α) = 0.

Proof.

F (x) = (x − α)G (x) ⇝ F ′(x) = G (x) + (x − α)G ′(x), so
F ′(α) = 0 ⇐⇒ G (α) = 0 ⇐⇒ G (x) = (x − α)H(x) for
some H(x) ∈ L[x ].
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Discriminant: definition

Definition

Let A(x) ∈ K [x ] have degree n ∈ N and leading
coefficient a ∈ K . Its discriminant is

discA =
(−1)n(n−1)/2

a
Res(A,A′) ∈ K .

Example

Let A(x) = ax2 + bx + c , a ̸= 0. Then A′(x) = 2ax + b, so
that

Res(A,A′) =

∣∣∣∣∣∣
a b c
2a b 0
0 2a b

∣∣∣∣∣∣ = 4a2c − ab2,

⇝ discA =
−1

a
Res(A,A′) = b2 − 4ac .
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Discriminant: properties
Theorem

Let A(x) ∈ K [x ] have degree n ∈ N, leading coefficient a ∈ K ,
and roots α1, · · · , αn ∈ K . Then

discA = (−1)n(n−1)/2an−2
n∏

j=1

A′(αj)

= (−1)n(n−1)/2a2n−2
∏
j ̸=k

(αj − αk)

= a2n−2
∏
j<k

(αj − αk)
2.

Proof.

Since A(x) = a
n∏

j=1

(x −αj), we have A
′(x) = a

n∑
j=1

∏
k ̸=j

(x −αk)

⇝ A′(αj) = a
∏
k ̸=j

(αj − αk).
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Discriminant: properties

Theorem

Let A(x) ∈ K [x ] have degree n ∈ N, leading coefficient a ∈ K ,
and roots α1, · · · , αn ∈ K . Then

discA = (−1)n(n−1)/2an−2
n∏

j=1

A′(αj)

= (−1)n(n−1)/2a2n−2
∏
j ̸=k

(αj − αk)

= a2n−2
∏
j<k

(αj − αk)
2.

Corollary

A(x) has multiple roots in K ⇐⇒ discA = 0.
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Discriminant: properties

Corollary

A(x) has multiple roots in K ⇐⇒ discA = 0.

Definition (Separable polynomial)

A polynomial A(x) ∈ K [x ] is separable if discA ̸= 0, and
inseparable if discA = 0.
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