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Reminders on
algebraic extensions




Reminders

Let K C L be a field extension, and let o € L.
Write K[a] = {F(a) | F(x) € K[x]} for the subring generated
by K and «, and K(«) for the subfield generated by K and «.

lo ={F(x) € K[x] | F(or) = 0} is an ideal of K[x]. We say
that « is algebraic over K if I, # {0}; as K[x] is a PID, we
then have I, = (P(x)) for a unique monic P(x) € K[x], the
minimal polynomial of «, which is irreducible over K.

Besides, we then have

T
)

Kla] = K(a) = Ko/ (d = degP),

.
I
o

so [K(«) : K] =d.

Indeed, let 0 # F(«) € K[a]; then F(x) and P(x) are
coprime, so (Bézout) there exist U(x), V(x) € K[x] such that
U(x)F(x) + V(x)P(x) =1, so 1/F(a) = U(a) € Kl|a].



Stem fields,
splitting fields




Stem fields, splitting fields

Let K be a field.

Definition (Stem field)

Let P(x) € K|[x] irreducible. A stem field of P over K is an
extension K C L containing a root o € L of P(x) and such

that L = K(«) (minimality).

Definition (Splitting field)

Let F(x) € K[x]. A splitting field of F over K is an extension

K C L containing oy, - -+ , g such that F(x) = Hj‘.j:l(x — o)

and such that L = K(ay, -+, ag) (minimality).

Nicolas Mascot Galois theory



Stem fields, splitting fields

Definition (Stem field)

Let P(x) € K|[x] irreducible. A stem field of P over K is an
extension K C L containing a root o € L of P(x) and such

that L = K(«) (minimality).

Definition (Splitting field

—
~—

Let F(x) € K[x]. A splitting field of F over K is an extension
K C L containing oy, - -+ , g such that F(x) = Hj’zl(x — o)
and such that L = K(au, -+, ag) (minimality).

Let K = Q and P(x) = x3 — 2, whose roots in C are o = V2,
B = (V2 and v = (?V/2, where ( = €*™/3 (so (3 = 1).

Then Q(«) is a stem field of P(x) over Q, but not a splitting
field, e.g. because Q(«) C R whereas 3,7 € R.

A splitting field of P(x) is Q(cv, 8,7) = Q(v/2, ().




Stem fields, splitting fields

Let K be a field.

Definition (Stem field)

Let P(x) € K|[x] irreducible. A stem field of P over K is an
extension K C L containing a root o € L of P(x) and such

that L = K(«) (minimality).

Definition (Splitting field)
Let F(x) € K[x]. A splitting field of F over K is an extension
K C L containing oy, - -+ , g such that F(x) = Hj‘.j:l(x — o)

and such that L = K(ay, -+, ag) (minimality).

Existence? Uniqueness?
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Stem fields: existence

Let P(x) € K[| irreducible. Then L = K[x]/(P(x)) is a stem
field of P over K.

Lis a field: Let 0 # F(x) € L. Then P(x) { F(x), so they are
coprime, so there are U, V € K[x] such that UF + VP = 1.

Then U(x) is an inverse of F(x).
Extension of K: if k # k' € K, then k # k' € L.

Stem field: let « =X € L. Then P(a) = P(x) =0 € L, and
clearly L = K(«). O

The quotient ring K[x]/(F(x)) is a field iff. F(x) is
irreducible over K (compare with Z/nZ).
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K-morphisms

Definition

Let K be a field, and let K C L, K C M be extensions of K.
A K-morphism from L to M is a morphism f : L — M such
that fix = ldk, i.e. f(k) =k for all k € K.

Notation: Hom (L, M).

Similarly define K-isomorphisms and K-automorphisms.

Ring morphisms between fields are always injective, and always
respect inverses: f()f(I71) = f(II!) = 1.

v

Auty (L) is a subgroup of Aut(L).
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Stem fields: uniqueness

Let P(x) € K|[x] irreducible. Stem fields of P(x) over K are
unique up to K-isomorphism.

Let L = K(«) be a stem field of P, where P(ar) = 0. The
isomorphism theorem applied to

ev, : K[x] — L
F(x) — F(«)

yields K[x]/ Kerev, >~ Imev,.
But Kerev, = I, = (P(x)), and Imev, = K[a] = K(a) = L
by minimality. O]
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Stem fields: uniqueness

Let P(x) € K|[x] irreducible. Stem fields of P(x) over K are
unique up to K-isomorphism.

Let K=Q, P(x) =x3 -2, a=+/2, B=1(V/2, and
v = (%V2 (¢ = €*™/3). Then

Q[x/(x* — 2) ~g Qo) ~o Q(B) ~q Q)-

Let K =T, P(x) = x>+ 1. Then

R[x]/(x* + 1) ~g C = R(i) =g C = R(—i).




Splitting fields: existence

Let F(x) € K[x]. A splitting field of F(x) over K exists.

If F(x) already splits into linear factors over K, we are done.
Else, take an irreducible factor P(x) of degree > 2 of F(x),
and start over with L = K[x]/(P(x)) instead of K and
F(x)/(x — «) instead of F(x), where « =X € L. O
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Splitting fields: existence

Example (Splitting field of x3 — 2 over Q)

Take K = Q, F(x) = x* — 2 over Q.

Since F(x) is irreducible over K, first enlarge K

into L = K[x]/(x* — 2) = K(«), where a = x € L.

We compute F(y)/(y — a) = y? + ay + o?

~ factorisation F(y) = (y — a)(y® + ay + o?) over L.

Two alternatives: If y? + ay + o splits over L, then L is a
splitting field of F, so done; else, must further enlarge L.
Actually, y? + ay + o2 is irreducible over L because

A = —3a? is not a square in L (embed in R),

~ M = Lly]/(y? + ay + a?). Then y? + ay + o2 has a root
in M, so splits completely over M, so

M = L1/ (2 +ay +02) = (K[x|/(¢ = 2)) )/ (2 + 5+ )
= Q[x, y]/(x® — 2,y* + xy + x?) is a splitting field of F(x)
over Q. The roots are X, y, and —x — y.

Nicolas Mascot Galois theory




Extension of automorphisms to splitting fields

Let 0 : K1 ~ K, be a field isomorphism.

Let F]_(X) € K]_[X], and FQ(X) = Flg(X) € KQ[X].

Finally, for i = 1,2, let L; be a splitting field of F;(x) over K;.
Then there exists T : Ly ~ L, such that 7k, = 0.

Induction on [L; : Ki].
If [Ly : Ki] =1, then Ly = Ky, so Fi(x) = [[;(x — a;)

with a; € Ki. So F(x) =[]; (x — o(y)) € Ka[x],
so L, = K, ~ take 7 = 0.
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Extension of automorphisms to splitting fields

If [L1 : Ki] > 1, then F1(x) not totally split over Ki, so has
irreducible factor P;(x) € Ki[x]. Let Px(x) = P{(x) € Ka[x],
and for i = 1,2, let «; € L; be a root of P;(x), and let

E; = Ki(a;) C L;. Then E; is a stem field of P;(x) over K;, so
E1 = Kl(Oél) ZKI Kl[X]/(Pl(X)) & KQ[X]/(PZ(X)) ";"Kz K2(a2) = E2

~ o' 1 E; ~ E, extending o.

By tower law, [Ly : E1] = [L1 : Ki]/[E1 : Ki] < [L1: Ki]
~+ induction. ]
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Extension of automorphisms to splitting fields

Let o : K1 ~ K, be a field isomorphism.

Let F1(x) € Ki[x], and Fy(x) = F{(x) € Ky[x].

Finally, for i = 1,2, let L; be a splitting field of F;(x) over K;.
Then there exists T : Ly ~ L, such that Tk, = 0.

Corollary (Uniqueness of splitting fields)

Let F(x) € K[x]. Splitting fields of F(x) over K are unique up
to K-isomorphism.

v

Apply lemma with K; = K; = K and 0 = Id.
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Algebraic closure (proofs omitted)

Theorem (Steinitz)

Let K be any field. There exists an extension K C K such
that every F(x) € K|[x] splits over K, and which is algebraic
over K (minimality). It is unique up to K-isomorphism.

P
Counter-example |

Counter-example

Q is not C (not algebraic ~ too large), but
{a € C | « algebraic over Q}.

It may be shown that every F(x) € K[x] splits over K.
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Galois conjugacy




K-morphisms and roots

Let K be a field, F(x) € K[x], L, M extensions of K,
and o : L — M a K-morphism.
If « € L a root of F, then o(a)) € M is also a root of F.

Write F(x) = >_; kix with k; € K. Then
0=0(0)=0(F(a)) =0 (Z kjo/>

=Y ol =Y ko) =F(o(@). O
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K-morphisms and roots

Let K be a field, F(x) € K[x], L, M extensions of K,
and o : L — M a K-morphism.
If o € L a root of F, then o(a) € M is also a root of F.

Let o € Aut(C) be complex conjugation. As o € Autg(C), the
set of complex roots of any F(x) € R[x] is stable by o.

V
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Galois conjugacy
(Theoem .|

Let F(x) € K[x], L a splitting field of F(x) over K,

and o, B € L. TFAE:
@ « and (8 have the same minimal polynomial over K,
@ There exists o € Autk(L) such that o(a) = .

IJ: K1 = K(a) and K, = K(3) are stem fields of P over K
~» K-isomorphism o : K(«) ~x K(f) sending a to f3,
which extends to 7 € Aut(L).

1 Let P(x) € K[x] min poly of a. Then P(«a) =0,
so P() = 0 as well by lemma.
~~ min poly of 3 over K divides P, so = P
(irr+monic). O
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Galois conjugacy

Let F(x) € K[x], L a splitting field of F(x) over K,
and o, 5 € L. TFAE:

@ « and 3 have the same minimal polynomial over K,
@ There exists o € Autk(L) such that o(a) = 5.

Definition (Galois conjugacy)

In this case, o and (3 are said to be conjugate over K.
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Galois conjugacy

Let F(x) € K[x], L a splitting field of F(x) over K,
and o, B € L. TFAE:

@ « and 3 have the same minimal polynomial over K,
@ There exists o € Autk(L) such that o(a) = 5.

Definition (Galois conjugacy)

In this case, o and (3 are said to be conjugate over K.

The conjugates of o = /2 over Q are « itself, 5 = (\3/5, and
7 =CV2(¢=e"P).

So there exist Q-automorphisms of L = Q(v/2,¢) which
permute «, (3, transitively.
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Galois conjugacy

Example (Complex conjugacy as Galois conjugacy)
Take K =R, F(x)=x>+1~ L=C, and let a € C.
As R C R(«) C C, «v is algebraic over R of degree < 2.

If @ € R, then its min poly over R is x — a, so the only
R-conjugate of « is « itself.

If « ¢ R, then its min poly over R must be (x — a)(x — @), so
the R-conjugates of « are o and @.
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Finite fields 1/4:
Characteristic




The characteristic of a ring

Definition (Characteristic of a ring)

Let R be a ring. lIts characteristic is the ¢ € Z>q such that
irR:Z — R
n — 1+..-41
. e - N——r
satisfies Ker ir = cZ. n times

In other words, char R is the smallest ¢ € N such
that 14+ ---+1=20in R, or O if there is no such c.
———

c times

charZ/mZ = m.
char Q[x] = 0.

Nicolas Mascot Galois theory



The characteristic of a ring

Definition (Characteristic of a ring)

Let R be a ring. Its characteristic is the ¢ € Z>( such that
ip : Z — R
a e
satisfies Ker ir = cZ. n times

In other words, char R is the smallest ¢ € N such
that 14+ ---+1=20in R, or O if there is no such c.
—_———

c times

For all x € R, (charR)x = (1+---+1)x = 0x = 0.
—_————

char R times

If R is finite, then char R # 0 since ig cannot be injective.
v



The characteristic of a domain
Proposition
If R is a domain, then char R is either O or a prime number.

Suppose char R = ab with a, b < char R. Then
0:\1+"'+1,:(\1+"'+1,)(\1+"'+1,)
abmes a't?;es bgges
butl1+---+1#0and1+---+1#0in R. O
— T o
a times imes
charQ = 0.
charZ/pZ = p.
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The prime subfield

Definition (Prime subfield)

Let K be a field. The prime subfield of K is the smallest
subfield of K, i.e. that generated by 0 and 1.

The prime subfield of R is Q.

Proposition
Let K be a field.
@ Ilfchar K =0, then K contains a copy of Q.

@ Ifchar K = p, then K contains a copy of Z/pZ.

Consider the prime subfield of K. O
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The cardinal of a finite field

If K is a finite field, then there exists d € N such
that #K = p?, where p = char K.

We know that K is a finite extension of Z/pZ.
Let d = [K : Z/pZ)]. Then K ~ (Z/pZ)? as (Z/pZ)-vector
spaces; in particular, they have the same cardinal. ]

There does not exist a field with 6 elements.
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An identity in finite fields

Let K be a finite field with q elements. Then k9 = k for all
keK.

If k=0, OK.
Else, k € K*, which is a group of order g — 1, so k971 =1 by
Lagrange. O]
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Finite fields 2/4:
Frobenius




The Frobenius morphism

Proposition

Let R be a commutative ring such that char R is a prime
number p. Then

(a+ b)P = aP + bP

for all a,b € R.

Since (a+ b)P = >h_, (P)a¥bP~*, if suffices to prove
that p | (’;) for 0 < k < p. And indeed p | p! = (’;)k!(p— k)!
but p 1 k! nor (p — k)!. O
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The Frobenius morphism

Let R be a commutative ring such that char R is a prime
number p. Then
(a+ b)P = aP + bP

for all a, b € R.

Corollary (Frobenius map)

If char R = p, then the Frobenius map

R — R

Frob :
—> rP

is a ring morphism.
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The Frobenius morphism
Corollary (Frobenius map)

If char R = p, then the Frobenius map

Frob : K = i
— rP

is a ring morphism.

Take R =7Z/pZ. Then Frob(a) = a? = a for all a € R, so
Frob = Id.
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The Frobenius morphism
Corollary (Frobenius map)

If char R = p, then the Frobenius map

R — R

Frob :
—> rP

is a ring morphism.

Take R = (Z/pZ)[x], and let F(x) = Y. fix) € R. Then

(A = (fof) =D ()P =3 hx
J J

so Frob : F(x) — F(xP).




Finite fields 3/4:

Structure theorems




Finite multiplicative subgroups in fields

Let K be a field, and G < K* a finite subgroup. Then G is cyclic.

Proof (Non-examinable).

Let n = #G, and for all d | n, let ¢)(d) be the number of
elements of G of order exactly d.

Claim: ¥(d) < ¢(d) for all d.

If 4)(d) = 0 OK. Else, let h € G have order d, and let
H=(h)<G,so H~7/dZ. Forall k€ H, k%=1 by
Lagrange. But x¢ — 1 has at most d roots in the field K
~ forall xe K, x3=1=— x € H.

~ ¥(d) = ¢(d) if ¢(d) # 0.
Thus n =) ¢(d) < Y é(d)=n
d| d|

claim

~ )(d) = qbn(d) for all d. ,|1n particular, ¥(n) = ¢(n) > 1. [
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Summary of results so far

Let K be a finite field with q elements.
Then q = p where p = char K is prime, K D 7/ pZ,
and d = [K : Z/pZ)].
Besides,
(K,+) = (Z/pZ)*,
(K, x) ~Z/(q - 1)Z,

and Frob € Autzpz(K).
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Summary of results so far

Let K be a finite field with q elements.
Then q = p? where p = char K is prime, K 2 Z/pZ,
and d = [K : Z/pZ).
Besides,
(K,+) = (Z/pZ)*,
(K*,x) = Z/(q - 1)Z,

and Frob € Autz,,z(K).

Corollary (Primitive element theorem for finite fields)

If K C L are finite fields, then L = K(«) for some o € L.
In particular, L ~x K[x]/(ma(x)), where m,(x) € K[x] is the
minimal polynomial of a over K.
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Summary of results so far

Corollary (Primitive element theorem for finite fields)

If K C L are finite fields, then L = K(«) for some a € L.

In particular, L ~x K[x]/(ma(x)), where m.(x) € K[x] is the
minimal polynomial of « over K.

Take o € L to be a generator of the cyclic group L*. O
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Fundamental theorem of finite fields

@ The number of elements of a finite field is a prime power.
Conversely, for each prime power q = p?, there exists a
finite field with q elements.

@ Two finite fields with the same number of elements are
isomorphic.

@ Let K and L be two finite fields. Then L contains a copy
of K iff. #L is a power of #K.

The first two points justify the notation I, for “the” finite
field with g elements.

F, = Z/pZ.
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Fixed points of field morphisms

Let K be a field, and 0 : K — K be a field morphism.
Then {o € K | (o) = a} is a subfield of K.

Routine. (]
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Fundamental theorem of finite fields : proof (1/3)

Suppose g = p? is a prime power. Let IE‘_,, be an algebraic
closure of F, = Z/pZ, and let

Z,={acF,|a’=al.

Claim: Z, is a subfield of F, with g elements.
Indeed, since ®, = Frobo--- o Frob : x — x9 is a field

TV
d times

morphism, Z, is a subfield of FP.
Besides, let F(x) = x? — x € F,[x]. It has all its roots in T ;
and since F'(x) =gx9 ! —1=-lasp=0€TF,,

gcd(F, F') =1, so F has no repeated roots ~» #Z, = q.
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Fundamental theorem of finite fields : proof (2/3)

Suppose now that M is another field with g elements.

Then M = Fp(«a) for some a € M; let m,(x) € Fp[x] be its
minimal polynomial, and let 5 € F,, be a root of m,(x).

As F,(a) = M and F,(3) C I, are stem fields of m,(x), they
are isomorphic.

Besides, #[F,(5) = #M = q, so v9 = for all v € F,(5), so
F,(5) C Z,; and actually F,(8) = Z, by cardinals.
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Fundamental theorem of finite fields : proof (3/3)

Let K and L be finite fields with #K = q = p?
and #L =q = p'?.

If K C L, then #L = #KIEKl so p =pand d | d'.

Conversely, suppose that p’ = p and d | d".
Then Z, C Zy in Fp,.
But up to isomorphism, K = Z,, and L = Z.

F, and Fg are both extensions of F, = Z /27, but Fg does not
contain any copy of [F,!

In fact, the smallest finite field containing both a copy of [F,4
and a copy of Fg is Feg,.
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Finite fields 4/4:
Explicit construction




Construction of finite fields

Let g = p? be a prime power. We know that F, exists, and is
an extension of [F, of degree d

~ Fq =F,(a) for some a €

~» mgy(x) € F,[x] is irreducible of degree d.

Conversely, if P(x) € Fp[x] is any irreducible polynomial of

degree d, then
Fp[x]/(P(x))

is a finite field with p? = g elements.
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Example: small extensions of I,

We have F, ~ Z/27.

To construct Fs, we need P(x) € Fy[x] irreducible of deg 2.

A polynomial of degree 2 is irreducible iff. it has no roots, and
the only possible roots are {0,1} =T,

~ P(x) = x*> + x + 1 (only choice!)

v By = Fo[x] /(X2 + x +1).

To construct Fg, we need Q(x) € F,[x] irreducible of deg 3.
A polynomial of degree 3 is irreducible iff. it has no roots.
~» Q(x) = x* + x + 1 (other choice: x3 + x* + 1)

~ o Fg = Fo[x]/(x* +x +1).
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Example: small extensions of I,

To construct F,, we need P(x) € F[x] irreducible of deg 2.
~ P(x) = x*> + x + 1 (only choice!)
v By = Fo[x]/(x® + x +1).

To construct Fg, we need Q(x) € F,[x] irreducible of deg 3.
o Fg = Fo[x]/(x® +x +1).

To construct Fy6, we need R(x) € F,[x] irreducible of deg 4.
A polynomial of degree 4 is irreducible iff. it has no roots and
is not the product of two irreducibles of degree 2.

The only product of irreducibles of degree 2 is

(PHx+1P =P+ + 1P =x"+x*+ 1.
~ can take R(x) = x* + x + 1 (there are other choices)
o e = Fo[x]/(x* + x + 1).



Polynomials and their roots




Symmetric polynomials

Fix n € N, and let K be a field.

Definition
A polynomial F(xy,--- ,x,) € K[x1,- -, x| is symmetric if it
is invariant under any permutation of the variables x, - - - , x,.

Example (n = 3)

x? + X3 + x5 is a symmetric polynomial.
x2xy + X3x3 + X3 X is not.
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Elementary symmetric polynomials

The elementary symmetric polynomials in n variables are

@ 01 =X1+Xo+ -+ Xp,

o :

(*] 0j = E HX,',
. IC{1,---,n} i€l

= #1=j

@ 0, = X1Xo "+ Xp.

For n = 4, the elementary symmetric polynomials are
@ 01 = X1+ Xo + X3+ Xq,
@ 0 = X1X2 + X1X3 + X1Xg + XoX3 + XoX4 + X3Xq,
@ 03 = X1XpX3 + X1X0X4 + X1X3Xg + XoX3Xy,
Q@ 04 = X1X2X3X4.
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Fundamental theorem on symmetric polynomials

Theorem (Proof omitted)

Let K be a field, and let F(xy,--- ,xn) € K[x1,- -+ ,X,]. Then
F is symmetric <= F is a polynomial in o4, --- , 0, with
coefficients in K.

<— is obvious.

Example (n = 3)

F = x? + x3 + x3 is symmetric, so it can be expressed in terms
of 01, 02, 03. Indeed,

02 =(x1+x+x3)° =x2+ X3 + x5+ 2x0 + 2x1x3 + 2x0x3 = F + 207
~ F = 02 — 20,.

.
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Relations between coefficients and roots

Let F(x ) =x"+ax" 1+ +a, 1x+ a, € K[x] have roots
ap,-+ ,a, € K. Then aj = ( 1Yoi(a, -+ ,a,) forallj.

Expand F(x) = [[}_,(x — o). O
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Relations between coefficients and roots

Theorem (Vieta)

Let F(x) = x" + a1x" " 4 --- 4 a,_1x + a, € K|[x] have roots
a1, ,a, € K. Then a; = (—1Yoj(aq, -+ , ) for all j.

We can read the value of any symmetric polynomial in the
roots of F(x) off its coefficients aj, even if we do not know
these roots. )

Let F(x) = x> — x> + 2x + 8 have roots ay, az,as. Then we
have 01 = a1 + o + a3 = 1, 05 = oy + ayas + apas = 2,
and 03 = (0103 = —8.

Therefore, a2 + a3 + a3 = 02 — 20y, = —3.
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Relations between coefficients and roots

Theorem (Vieta)

Let F(x) = x" + aix" '+ -+ a, 1x+ a, € K[x] have roots
a1, ,a, € K. Then a; = (—1Yo(aq,--- ,a,) for all j.

We can read the value of any symmetric polynomial in the
roots of F(x) off its coefficients aj, even if we do not know
these roots.

Let F(x) = x> — x> + 2x + 8 have roots oy, ay, as.
In contrast, we cannot evaluate a3a, + a3 + a3a; that way.
In fact, this value depends on the ordering of the roots!
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Relations between coefficients and roots

Theorem (Vieta)

Let F(x) = x" + aix" '+ +a, 1x+ a, € K[x] have roots
a1, ,a, € K. Then a; = (—1Yo;(aq,- -+ ,a,) for all j.

V.
Corollary

We can read the value of any symmetric polynomial in the
roots of F(x) off its coefficients aj, even if we do not know
these roots.

Corollary

The value of any symmetric polynomial in the roots with
coefficients in K lies in K.
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Resultants




Resultant: definition

Definition (Resultant of two polynomials)

Let R be a commutative ring. The resultant of
A=3""oax € R[x] and B =37]_ bux* € R[x] is
the (m + n) x (m+ n) determinant
am am*l e aO 0 PEREY 0
0 dm dm-1 do
. ' . 0
- 0 coo O am am—1 ' Aao
Res(A, B) = b, by - b 0 ol € R
0 bn bn—l bO
' 0
0 O bn bn—l bO
(n rows of A, m rows of B).

v
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Resultant: definition

Res(x? —2,x* +1) =

10
01
10
01
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Resultant: properties
Theorem (Proof admitted)

Let K be a field, and A(x), B(x) € K[x].
If we have (over K or an extension)
deg A deg B
:aH X — qj) andB:bH x — Bk), then
deg A k=1 deg Adeg B

Res(A B — gdeeB H B( aj _ jdegBpdeg A H H

Jj=1 j=1 k=1
deg B

_ (_1)degAdengdegA H A(ﬁk) _ (_1)degAdegB Res(B,A).

k=1

Example (K = Q)

Let A=x%>—2=(x—V2)(x +v2), B=x?>+1=(x—i)(x+1i). Then
Res(A, B) = B(v/2)B(—v/2) = A(i)A(—i)
= (V2= (V2 + (V2= (-V2+i) =
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Resultant: properties

Theorem (Proof admitted)

Let K be a field, and A(x), B(x) € K[x].
If we have (over K or an extension)
deg A deg B
A:aH(x—aj) and B=0> H x — k), then
Jj=1 deg A deg Adeg B
Res(A, B) = gdeB H B(«;) dengdegA H H
j=1 Jj=1 k=1
deg B
_ (_1)degAdengdegA H A(Bk) _ (_1)degAdegB Res(B,A).
k=1

Res(A, B) = 0 <= A and B have a common root in K <=
A and B have a common nontrivial factor over K.
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Application: preservation of algebraicness

Let K C L be fields, and let o, B € L. If o and (8 are algebraic
over K, then so are « + 3, a — 3, a3, and o/ 3 (B # 0).

Non-constructive proof.

a, 8 alg. / K ~ minpoly A(x), B(x) € K[x]. Then

[K(a) : K] = deg A < o0, and [K(a, 8) : K()] < deg B < o0
since the minpoly of 5 over K(«a) divides B(x).

By tower law, [K(«, 3) : K] < o0, so K(«, [3) is an algebraic
extension of K. O
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Application: preservation of algebraicness

Let K C L be fields, and let o, B € L. If a and (8 are algebraic
over K, then so are « + 3, a — 3, af3, and a/3 (B # 0).

Constructive proof with resultants.
a, B alg. / K ~ minpoly A(x), B(x) € K[x]. Factor (over L)

n

Alx) = H(X —a), B(x)=]](x— 5.

where oo = o and B = B, and view A(ys(, :19(x—y) € K[x][y].

Then C(x) = Res (A(y), B(x — y)) € K[x] satisfies

C(x) = H B(x=y)ly=q; = H B(x—aj) = H H(X_aj_ﬁk)>
j=1 j=1 j=1 k=1

so o+ 3 root of C(x) ~ algebraic / K.

Same idea for a — 3, af and a/f3. ]
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Application: preservation of algebraicness

Let K C L be fields, and let o, B € L. If a and (8 are algebraic
over K, then so are « + 3, a — 3, af3, and /3 (B # 0).

a =+/2, f = /3 algebraic / Q ~> o+ B algebraic / Q.
More specifically, since A(x) = x —2 and B(x) = x — 3,
o+ B is a root of
Res,(y> — 2,(x — y)* = 3) = Res, (y* — 2,y — 2xy + x*> — 3)
1 0 -2 0
0 1 0 —7
1 —2x x>-3 0
0 1 —2x x?>-3
=x*—10x* — 1 € Q[].
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Application: preservation of algebraicness

Let K C L be fields, and let o, B € L. If a and (8 are algebraic
over K, then so are « + 3, a — 3, af3, and a/3 (B # 0).

A ={a € C| « algebraic over Q}

is a subfield of C (~ A = Q is the algebraic closure of Q).
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Discriminants




Reminder on multiple roots

Let K C L be fields, F(x) € K[x], and a € L.

F(a) =0 <= F(x) = (x — a)G(x) for some G(x) € L[x].

Euclidean-divide F(x) by x — « in L[x]:
F(x) = (x = 2)Q(x) + R(x)

where deg R < deg(x — ) so R is constant.

Evaluate at x = a ~» R = F(a). O
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Reminder on multiple roots

Let K C L be fields, F(x) € K[x], and « € L.

Definition (Multiple root)

« is a multiple root of F(x) if F(x) = (x — a)?H(x) for
some H(x) € L[x].

Proposition (Derivatives detect multiple roots)

Let o € L be a root of F(x). Then
« is a multiple root of F(x) < F'(a) =

F(x) = (x = ) G(x) ~ F'(x)
F'(a) =0 <= G(a) =0
some H(x) € L[x]. O
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Discriminant: definition

Definition

Let A(x) € K[x] have degree n € N and leading
coefficient a € K. lts discriminant is

1 n(n—1)/2
discA = (=1)

Let A(x) = ax® + bx + ¢, a# 0. Then A'(x) = 2ax + b, so

Res(A, A) € K.

that
a b c
Res(A,A)=|2a b 0|=4a’c— ab’,
0 2a b

-1
~  discA = - Res(A, A') = b* — 4ac.

v
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Discriminant: properties

Let A(x) € K[x] have degree n € N, leading coefficient a € K,

and roots vy, -+ ,a, € K. Then ,
disc A = (—1)"" D222 T A'(ey)
j=1
_ (_1)n(n—1)/232n—2 H(aj o ak)
JF#k
_ a2n—2 H(aj . ak)Z'
j<k

Since A(x —aHx a;j), ), we have A’(x —ag Hx )
Jj=1 J=1 kj
/ f— Pap—
WA(aj)—aH aj — Q). O
k#j




Discriminant: properties

Let A(x) € K[x] have degree n € N, leading coefficient a € K,
and roots vy, -+ ,a, € K. Then
disc A = (=1)"(" D22 TT A(oy)
j=1
_ (_1)n(n—1)/2a2n—2 H(aj . ak)
ik
_ aZn—2 H(aj . ak)Z'
Jj<k

A(x) has multiple roots in K <= disc A = 0.
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Discriminant: properties

A(x) has multiple roots in K <=> disc A = 0.

Definition (Separable polynomial)

A polynomial A(x) € K|[x] is separable if disc A # 0, and
inseparable if disc A = 0.
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