MAU34101 Galois theory

1 - More on field extensions

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2021–2022 Version: October 2, 2023

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Nicolas Mascot Galois theory

Reminders on algebraic extensions

Reminders

Let $K \subset L$ be a field extension, and let $\alpha \in L$. Write $K[\alpha] = \{F(\alpha) \mid F(x) \in K[x]\}$ for the subring generated by K and α , and $K(\alpha)$ for the subfield generated by K and α .

 $I_{\alpha} = \{F(x) \in K[x] \mid F(\alpha) = 0\}$ is an ideal of K[x]. We say that α is algebraic over K if $I_{\alpha} \neq \{0\}$; as K[x] is a PID, we then have $I_{\alpha} = (P(x))$ for a unique monic $P(x) \in K[x]$, the minimal polynomial of α , which is irreducible over K.

Besides, we then have

$$\mathcal{K}[\alpha] = \mathcal{K}(\alpha) = \bigoplus_{j=0}^{d-1} \mathcal{K}\alpha^j \quad (d = \deg P),$$

so $[K(\alpha) : K] = d$. Indeed, let $0 \neq F(\alpha) \in K[\alpha]$; then F(x) and P(x) are coprime, so (Bézout) there exist $U(x), V(x) \in K[x]$ such that U(x)F(x) + V(x)P(x) = 1, so $1/F(\alpha) = U(\alpha) \in K[\alpha]$.

Stem fields, splitting fields

Let K be a field.

Definition (Stem field)

Let $P(x) \in K[x]$ irreducible. A stem field of P over K is an extension $K \subseteq L$ containing a root $\alpha \in L$ of P(x) and such that $L = K(\alpha)$ (minimality).

Definition (Splitting field)

Let $F(x) \in K[x]$. A <u>splitting field</u> of F over K is an extension $K \subseteq L$ containing $\alpha_1, \dots, \alpha_d$ such that $F(x) = \prod_{j=1}^d (x - \alpha_j)$ and such that $L = K(\alpha_1, \dots, \alpha_d)$ (minimality).

Stem fields, splitting fields

Definition (Stem field)

Let $P(x) \in K[x]$ <u>irreducible</u>. A <u>stem field</u> of P over K is an extension $K \subseteq L$ containing a root $\alpha \in L$ of P(x) and such that $L = K(\alpha)$ (minimality).

Definition (Splitting field)

Let $F(x) \in K[x]$. A <u>splitting field</u> of F over K is an extension $K \subseteq L$ containing $\alpha_1, \dots, \alpha_d$ such that $F(x) = \prod_{j=1}^d (x - \alpha_j)$ and such that $L = K(\alpha_1, \dots, \alpha_d)$ (minimality).

Example

Let $K = \mathbb{Q}$ and $P(x) = x^3 - 2$, whose roots in \mathbb{C} are $\alpha = \sqrt[3]{2}$, $\beta = \zeta \sqrt[3]{2}$, and $\gamma = \zeta^2 \sqrt[3]{2}$, where $\zeta = e^{2\pi i/3}$ (so $\zeta^3 = 1$). Then $\mathbb{Q}(\alpha)$ is a stem field of P(x) over \mathbb{Q} , but not a splitting field, e.g. because $\mathbb{Q}(\alpha) \subset \mathbb{R}$ whereas $\beta, \gamma \notin \mathbb{R}$. A splitting field of P(x) is $\mathbb{Q}(\alpha, \beta, \gamma) = \mathbb{Q}(\sqrt[3]{2}, \zeta)$. Let K be a field.

Definition (Stem field)

Let $P(x) \in K[x]$ <u>irreducible</u>. A <u>stem field</u> of P over K is an extension $K \subseteq L$ containing a root $\alpha \in L$ of P(x) and such that $L = K(\alpha)$ (minimality).

Definition (Splitting field)

Let $F(x) \in K[x]$. A <u>splitting field</u> of F over K is an extension $K \subseteq L$ containing $\alpha_1, \dots, \alpha_d$ such that $F(x) = \prod_{j=1}^d (x - \alpha_j)$ and such that $L = K(\alpha_1, \dots, \alpha_d)$ (minimality).

Existence? Uniqueness?

Stem fields: existence

Theorem

Let $P(x) \in K[x]$ irreducible. Then L = K[x]/(P(x)) is a stem field of P over K.

Proof.

L is a field: Let $0 \neq \overline{F(x)} \in L$. Then $P(x) \nmid F(x)$, so they are coprime, so there are $U, V \in K[x]$ such that UF + VP = 1. Then $\overline{U(x)}$ is an inverse of $\overline{F(x)}$.

Extension of *K*: if $k \neq k' \in K$, then $\overline{k} \neq \overline{k'} \in L$.

Stem field: let $\alpha = \overline{x} \in L$. Then $P(\alpha) = \overline{P(x)} = 0 \in L$, and clearly $L = K(\alpha)$.

Remark

The quotient ring K[x]/(F(x)) is a field iff. F(x) is irreducible over K (compare with $\mathbb{Z}/n\mathbb{Z}$).

K-morphisms

Definition

Let K be a field, and let $K \subset L$, $K \subset M$ be extensions of K. A <u>K-morphism</u> from L to M is a morphism $f : L \longrightarrow M$ such that $f_{|K} = Id_K$, i.e. f(k) = k for all $k \in K$. Notation: Hom_K(L, M). Similarly define K-isomorphisms and K-automorphisms.

Remark

Ring morphisms between fields are always injective, and always respect inverses: $f(I)f(I^{-1}) = f(II^{-1}) = 1$.

Remark

 $\operatorname{Aut}_{\mathcal{K}}(L)$ is a <u>subgroup</u> of $\operatorname{Aut}(L)$.

Stem fields: uniqueness

Theorem

Let $P(x) \in K[x]$ irreducible. Stem fields of P(x) over K are unique up to K-isomorphism.

Proof.

Let $L = K(\alpha)$ be a stem field of P, where $P(\alpha) = 0$. The isomorphism theorem applied to

$$\begin{array}{rcl} \operatorname{ev}_{\alpha} : K[x] & \longrightarrow & L \\ F(x) & \longmapsto & F(\alpha) \end{array}$$

yields $K[x]/\operatorname{Ker} \operatorname{ev}_{\alpha} \simeq \operatorname{Im} \operatorname{ev}_{\alpha}$. But $\operatorname{Ker} \operatorname{ev}_{\alpha} = I_{\alpha} = (P(x))$, and $\operatorname{Im} \operatorname{ev}_{\alpha} = K[\alpha] = K(\alpha) = L$ by minimality.

Stem fields: uniqueness

Theorem

Let $P(x) \in K[x]$ irreducible. Stem fields of P(x) over K are unique up to K-isomorphism.

Example

Let
$$K = \mathbb{Q}$$
, $P(x) = x^3 - 2$, $\alpha = \sqrt[3]{2}$, $\beta = \zeta \sqrt[3]{2}$, and $\gamma = \zeta^2 \sqrt[3]{2} (\zeta = e^{2\pi i/3})$. Then

$$\mathbb{Q}[x]/(x^3-2)\simeq_{\mathbb{Q}}\mathbb{Q}(\alpha)\simeq_{\mathbb{Q}}\mathbb{Q}(\beta)\simeq_{\mathbb{Q}}\mathbb{Q}(\gamma).$$

Example

Let
$$K = \mathbb{R}$$
, $P(x) = x^2 + 1$. Then

$$\mathbb{R}[x]/(x^2+1)\simeq_{\mathbb{R}}\mathbb{C}=\mathbb{R}(i)\simeq_{\mathbb{R}}\mathbb{C}=\mathbb{R}(-i).$$

Theorem

Let $F(x) \in K[x]$. A splitting field of F(x) over K exists.

Proof.

If F(x) already splits into linear factors over K, we are done. Else, take an irreducible factor P(x) of degree ≥ 2 of F(x), and start over with L = K[x]/(P(x)) instead of K and $F(x)/(x - \alpha)$ instead of F(x), where $\alpha = \overline{x} \in L$.

Splitting fields: existence

Example (Splitting field of $x^3 - 2$ over \mathbb{Q})

Take $K = \mathbb{Q}$, $F(x) = x^3 - 2$ over \mathbb{Q} . Since F(x) is irreducible over K, first enlarge K into $L = K[x]/(x^3 - 2) = K(\alpha)$, where $\alpha = \overline{x} \in L$. We compute $F(y)/(y-\alpha) = y^2 + \alpha y + \alpha^2$ \rightsquigarrow factorisation $F(y) = (y - \alpha)(y^2 + \alpha y + \alpha^2)$ over L. Two alternatives: If $y^2 + \alpha y + \alpha^2$ splits over L, then L is a splitting field of F, so done; else, must further enlarge L. Actually, $y^2 + \alpha y + \alpha^2$ is irreducible over *L* because $\Delta = -3\alpha^2$ is not a square in L (embed in \mathbb{R}), $\rightsquigarrow M = L[y]/(y^2 + \alpha y + \alpha^2)$. Then $y^2 + \alpha y + \alpha^2$ has a root in M, so splits completely over M, so $M = L[y]/(y^2 + \alpha y + \alpha^2) = (K[x]/(x^3 - 2))[y]/(y^2 + xy + x^2)$ $= \mathbb{Q}[x, y]/(x^3 - 2, y^2 + xy + x^2)$ is a splitting field of F(x)over \mathbb{O} . The roots are \overline{x} , \overline{y} , and $\overline{-x-y}$.

Extension of automorphisms to splitting fields

Lemma

Let $\sigma : K_1 \simeq K_2$ be a field isomorphism. Let $F_1(x) \in K_1[x]$, and $F_2(x) = F_1^{\sigma}(x) \in K_2[x]$. Finally, for i = 1, 2, let L_i be a splitting field of $F_i(x)$ over K_i . Then there exists $\tau : L_1 \simeq L_2$ such that $\tau_{|K_1|} = \sigma$.

Proof.

Induction on $[L_1 : K_1]$.

If
$$[L_1: K_1] = 1$$
, then $L_1 = K_1$, so $F_1(x) = \prod_j (x - \alpha_j)$
with $\alpha_j \in K_1$. So $F_2(x) = \prod_j (x - \sigma(\alpha_j)) \in K_2[x]$,
so $L_2 = K_2 \rightsquigarrow$ take $\tau = \sigma$.

Proof.

If $[L_1: K_1] > 1$, then $F_1(x)$ not totally split over K_1 , so has irreducible factor $P_1(x) \in K_1[x]$. Let $P_2(x) = P_1^{\sigma}(x) \in K_2[x]$, and for i = 1, 2, let $\alpha_i \in L_i$ be a root of $P_i(x)$, and let $E_i = K_i(\alpha_i) \subseteq L_i$. Then E_i is a stem field of $P_i(x)$ over K_i , so $E_1 = K_1(\alpha_1) \simeq_{\kappa_1} K_1[x]/(P_1(x)) \stackrel{\sigma}{\simeq} K_2[x]/(P_2(x)) \simeq_{\kappa_2} K_2(\alpha_2) = E_2$ $\rightsquigarrow \sigma' : E_1 \simeq E_2$ extending σ .

By tower law, $[L_1 : E_1] = [L_1 : K_1]/[E_1 : K_1] < [L_1 : K_1]$ \rightarrow induction.

Extension of automorphisms to splitting fields

Lemma

Let $\sigma : K_1 \simeq K_2$ be a field isomorphism. Let $F_1(x) \in K_1[x]$, and $F_2(x) = F_1^{\sigma}(x) \in K_2[x]$. Finally, for i = 1, 2, let L_i be a splitting field of $F_i(x)$ over K_i . Then there exists $\tau : L_1 \simeq L_2$ such that $\tau_{|K_1|} = \sigma$.

Corollary (Uniqueness of splitting fields)

Let $F(x) \in K[x]$. Splitting fields of F(x) over K are unique up to K-isomorphism.

Proof.

Apply lemma with $K_1 = K_2 = K$ and $\sigma = Id$.

Algebraic closure (proofs omitted)

Theorem (Steinitz)

Let K be any field. There exists an extension $K \subset \overline{K}$ such that every $F(x) \in K[x]$ splits over \overline{K} , and which is algebraic over K (minimality). It is unique up to K-isomorphism.

Example

 $\overline{\mathbb{R}} = \mathbb{C}.$

Counter-example

 $\overline{\mathbb{Q}} \text{ is not } \mathbb{C} \text{ (not algebraic } \rightsquigarrow \text{ too large), but} \\ \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraic over } \mathbb{Q} \}.$

Remark

It may be shown that every $F(x) \in \overline{K}[x]$ splits over \overline{K} .

K-morphisms and roots

Lemma

Let K be a field, $F(x) \in K[x]$, L, M extensions of K, and $\sigma : L \longrightarrow M$ a K-morphism. If $\alpha \in L$ a root of F, then $\sigma(\alpha) \in M$ is also a root of F.

Proof.

Write $F(x) = \sum_j k_j x^j$ with $k_j \in K$. Then

$$0 = \sigma(0) = \sigma(F(\alpha)) = \sigma\left(\sum_{j} k_{j} \alpha^{j}\right)$$

$$=\sum_{j}\sigma(k_{j})\sigma(\alpha)^{j}=\sum_{j}k_{j}\sigma(\alpha)^{j}=F(\sigma(\alpha)).$$

Lemma

Let K be a field, $F(x) \in K[x]$, L, M extensions of K, and $\sigma : L \longrightarrow M$ a K-morphism. If $\alpha \in L$ a root of F, then $\sigma(\alpha) \in M$ is also a root of F.

Example

Let $\sigma \in Aut(\mathbb{C})$ be complex conjugation. As $\sigma \in Aut_{\mathbb{R}}(\mathbb{C})$, the set of complex roots of any $F(x) \in \mathbb{R}[x]$ is stable by σ .

Theorem

Let $F(x) \in K[x]$, L a splitting field of F(x) over K, and $\alpha, \beta \in L$. TFAE:

- α and β have the same minimal polynomial over K,
- There exists $\sigma \in Aut_{\kappa}(L)$ such that $\sigma(\alpha) = \beta$.

Proof.

Theorem

Let $F(x) \in K[x]$, L a splitting field of F(x) over K, and $\alpha, \beta \in L$. TFAE:

- α and β have the same minimal polynomial over K,
- There exists $\sigma \in Aut_{\mathcal{K}}(L)$ such that $\sigma(\alpha) = \beta$.

Definition (Galois conjugacy)

In this case, α and β are said to be conjugate over K.

Theorem

Let $F(x) \in K[x]$, L a splitting field of F(x) over K, and $\alpha, \beta \in L$. TFAE:

- α and β have the same minimal polynomial over K,
- There exists $\sigma \in Aut_{\mathcal{K}}(L)$ such that $\sigma(\alpha) = \beta$.

Definition (Galois conjugacy)

In this case, α and β are said to be <u>conjugate</u> over K.

Example

The conjugates of $\alpha = \sqrt[3]{2}$ over \mathbb{Q} are α itself, $\beta = \zeta \sqrt[3]{2}$, and $\gamma = \zeta^2 \sqrt[3]{2}$ ($\zeta = e^{2\pi i/3}$). So there exist \mathbb{Q} -automorphisms of $L = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ which permute α, β, γ transitively.

Example (Complex conjugacy as Galois conjugacy)

Take $K = \mathbb{R}$, $F(x) = x^2 + 1 \rightsquigarrow L = \mathbb{C}$, and let $\alpha \in \mathbb{C}$.

As $\mathbb{R} \subseteq \mathbb{R}(\alpha) \subseteq \mathbb{C}$, α is algebraic over \mathbb{R} of degree ≤ 2 .

If $\alpha \in \mathbb{R}$, then its min poly over \mathbb{R} is $x - \alpha$, so the only \mathbb{R} -conjugate of α is α itself.

If $\alpha \notin \mathbb{R}$, then its min poly over \mathbb{R} must be $(x - \alpha)(x - \overline{\alpha})$, so the \mathbb{R} -conjugates of α are α and $\overline{\alpha}$.

Finite fields 1/4: Characteristic

Definition (Characteristic of a ring) Let R be a ring. Its <u>characteristic</u> is the $c \in \mathbb{Z}_{\geq 0}$ such that $i_R : \mathbb{Z} \longrightarrow R$ $n \longmapsto \underbrace{1 + \dots + 1}_{n \text{ times}}$ satisfies Ker $i_R = c\mathbb{Z}$.

In other words, char R is the smallest $c \in \mathbb{N}$ such that $\underbrace{1 + \cdots + 1}_{c \text{ times}} = 0$ in R, or 0 if there is no such c.

Example

char
$$\mathbb{Z}/m\mathbb{Z} = m$$
.
char $\mathbb{Q}[x] = 0$.

The characteristic of a ring

Definition (Characteristic of a ring)

Let R be a ring. Its characteristic is the $c \in \mathbb{Z}_{\geq 0}$ such that $i_R : \mathbb{Z} \longrightarrow R$ $n \longmapsto \underbrace{1 + \dots + 1}_{n \text{ times}}$ satisfies Ker $i_R = c\mathbb{Z}$.

In other words, char *R* is the smallest $c \in \mathbb{N}$ such that $\underbrace{1 + \cdots + 1}_{c \text{ times}} = 0$ in *R*, or 0 if there is no such *c*.

Remark

For all
$$x \in R$$
, $(\operatorname{char} R)x = (\underbrace{1 + \cdots + 1}_{\operatorname{char} R \text{ times}})x = 0x = 0.$

Remark

If R is finite, then char $R \neq 0$ since i_R cannot be injective.

The characteristic of a domain

Proposition

If R is a domain, then char R is either 0 or a prime number.

Proof.

Suppose char R = ab with a, b < char R. Then

Remark

char
$$\mathbb{Q} = 0$$
.
char $\mathbb{Z}/p\mathbb{Z} = p$.

The prime subfield

Definition (Prime subfield)

Let K be a field. The <u>prime subfield</u> of K is the smallest subfield of K, i.e. that generated by 0 and 1.

Example

The prime subfield of $\mathbb R$ is $\mathbb Q.$

Proposition

Let K be a field.

- If char K = 0, then K contains a copy of \mathbb{Q} .
- If char K = p, then K contains a copy of $\mathbb{Z}/p\mathbb{Z}$.

Proof.

Consider the prime subfield of K.

The cardinal of a finite field

Theorem

If K is a finite field, then there exists $d \in \mathbb{N}$ such that $\#K = p^d$, where $p = \operatorname{char} K$.

Proof.

We know that K is a finite extension of $\mathbb{Z}/p\mathbb{Z}$. Let $d = [K : \mathbb{Z}/p\mathbb{Z}]$. Then $K \simeq (\mathbb{Z}/p\mathbb{Z})^d$ as $(\mathbb{Z}/p\mathbb{Z})$ -vector spaces; in particular, they have the same cardinal.

Example

There does not exist a field with 6 elements.

Lemma

Let K be a finite field with q elements. Then $k^q = k$ for all $k \in K$.

Proof.

If k = 0, OK. Else, $k \in K^{\times}$, which is a group of order q - 1, so $k^{q-1} = 1$ by Lagrange.

Finite fields 2/4: Frobenius

Proposition

Let R be a commutative ring such that char R is a prime number p. Then

$$(a+b)^p = a^p + b^p$$

for all $a, b \in R$.

Proof.

Since $(a + b)^p = \sum_{k=0}^p {p \choose k} a^k b^{p-k}$, if suffices to prove that $p \mid {p \choose k}$ for 0 < k < p. And indeed $p \mid p! = {p \choose k} k! (p - k)!$, but $p \nmid k!$ nor (p - k)!.

The Frobenius morphism

Proposition

Let R be a commutative ring such that char R is a prime number p. Then

$$(a+b)^p = a^p + b^p$$

for all $a, b \in R$.

Corollary (Frobenius map)

If char R = p, then the Frobenius map

Frob :
$$\begin{array}{ccc} R & \longrightarrow & R \\ r & \longmapsto & r^p \end{array}$$

is a ring morphism.

Corollary (Frobenius map)

If char R = p, then the Frobenius map

Frob :
$$\begin{array}{ccc} R & \longrightarrow & R \\ r & \longmapsto & r^p \end{array}$$

is a ring morphism.

Example

Take $R = \mathbb{Z}/p\mathbb{Z}$. Then $Frob(a) = a^p = a$ for all $a \in R$, so Frob = Id.

The Frobenius morphism

Corollary (Frobenius map)

If char R = p, then the Frobenius map

$$\mathsf{Frob}: \begin{array}{ccc} R & \longrightarrow & R \\ r & \longmapsto & r^p \end{array}$$

is a ring morphism.

Example

Take
$$R = (\mathbb{Z}/p\mathbb{Z})[x]$$
, and let $F(x) = \sum_j f_j x^j \in R$. Then

$$\operatorname{Frob}(F(x)) \stackrel{\text{def}}{=} \left(\sum_{j} f_{j} x^{j}\right)^{p} = \sum_{j} f_{j}^{p} (x^{j})^{p} = \sum_{j} f_{j} x^{pj}$$

so Frob : $F(x) \mapsto F(x^p)$.
Finite fields 3/4: Structure theorems

Finite multiplicative subgroups in fields

Lemma

Let K be a field, and $G \leq K^{\times}$ a finite subgroup. Then G is cyclic.

Proof (Non-examinable).

Let n = #G, and for all $d \mid n$, let $\psi(d)$ be the number of elements of G of order exactly d. Claim: $\psi(d) < \phi(d)$ for all d. If $\psi(d) = 0$ OK. Else, let $h \in G$ have order d, and let $H = \langle h \rangle \leq G$, so $H \simeq \mathbb{Z}/d\mathbb{Z}$. For all $k \in H$, $k^d = 1$ by Lagrange. But $x^d - 1$ has at most d roots in the field K \rightsquigarrow for all $x \in K$. $x^d = 1 \Longrightarrow x \in H$. $\rightsquigarrow \psi(d) = \phi(d)$ if $\psi(d) \neq 0$. Thus $n = \sum_{d|n} \psi(d) \leq_{\text{claim}} \sum_{d|n} \phi(d) = n$ $\rightsquigarrow \psi(d) = \phi(d)$ for all d. In particular, $\psi(n) = \phi(n) \ge 1$.

Theorem

Let K be a finite field with q elements. Then $q = p^d$ where p = char K is prime, $K \supseteq \mathbb{Z}/p\mathbb{Z}$, and $d = [K : \mathbb{Z}/p\mathbb{Z}]$. Besides, $(K, +) \simeq (\mathbb{Z}/p\mathbb{Z})^d$,

$$({\mathcal K}^{ imes}, imes)\simeq {\mathbb Z}/(q-1){\mathbb Z}_{2}$$

and Frob \in Aut_{$\mathbb{Z}/p\mathbb{Z}$}(K).

Summary of results so far

Theorem

Let K be a finite field with q elements. Then $q = p^d$ where p = char K is prime, $K \supseteq \mathbb{Z}/p\mathbb{Z}$, and $d = [K : \mathbb{Z}/p\mathbb{Z}]$. Besides, $(K \to) \circ (\mathbb{Z}/p\mathbb{Z})^d$

$$(\mathsf{K},+)\simeq (\mathbb{Z}/p\mathbb{Z})^{*},$$

 $(\mathsf{K}^{ imes}, imes)\simeq \mathbb{Z}/(q-1)\mathbb{Z},$

and $Frob \in Aut_{\mathbb{Z}/p\mathbb{Z}}(K)$.

Corollary (Primitive element theorem for finite fields)

If $K \subseteq L$ are finite fields, then $L = K(\alpha)$ for some $\alpha \in L$. In particular, $L \simeq_K K[x]/(m_\alpha(x))$, where $m_\alpha(x) \in K[x]$ is the minimal polynomial of α over K.

Corollary (Primitive element theorem for finite fields)

If $K \subseteq L$ are finite fields, then $L = K(\alpha)$ for some $\alpha \in L$. In particular, $L \simeq_{\kappa} K[x]/(m_{\alpha}(x))$, where $m_{\alpha}(x) \in K[x]$ is the minimal polynomial of α over K.

Proof.

Take $\alpha \in L$ to be a generator of the cyclic group L^{\times} .

Fundamental theorem of finite fields

Theorem

- The number of elements of a finite field is a prime power. Conversely, for each prime power $q = p^d$, there exists a finite field with q elements.
- Two finite fields with the same number of elements are isomorphic.
- Let K and L be two finite fields. Then L contains a copy of K iff. #L is a power of #K.

The first two points justify the notation \mathbb{F}_q for "the" finite field with q elements.

Example

Lemma

Let K be a field, and $\sigma : K \longrightarrow K$ be a field morphism. Then $\{\alpha \in K \mid \sigma(\alpha) = \alpha\}$ is a subfield of K.

Proof.

Routine.

Suppose $q = p^d$ is a prime power. Let $\overline{\mathbb{F}_p}$ be an algebraic closure of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, and let

$$Z_q = \{ \alpha \in \overline{\mathbb{F}}_p \mid \alpha^q = \alpha \}.$$

<u>Claim</u>: Z_q is a subfield of $\overline{\mathbb{F}}_p$ with q elements. Indeed, since $\Phi_q = \underbrace{\operatorname{Frob} \circ \cdots \circ \operatorname{Frob}}_{d \text{ times}} : x \longmapsto x^q$ is a field morphism, Z_q is a subfield of $\overline{\mathbb{F}}_p$. Besides, let $F(x) = x^q - x \in \mathbb{F}_p[x]$. It has all its roots in $\overline{\mathbb{F}}_p$; and since $F'(x) = qx^{q-1} - 1 = -1$ as $p = 0 \in \mathbb{F}_p$, $\operatorname{gcd}(F, F') = 1$, so F has no repeated roots $\rightsquigarrow \#Z_q = q$. Suppose now that M is another field with q elements.

Then $M = \mathbb{F}_p(\alpha)$ for some $\alpha \in M$; let $m_{\alpha}(x) \in \mathbb{F}_p[x]$ be its minimal polynomial, and let $\beta \in \overline{\mathbb{F}_p}$ be a root of $m_{\alpha}(x)$.

As $\mathbb{F}_{p}(\alpha) = M$ and $\mathbb{F}_{p}(\beta) \subseteq \overline{\mathbb{F}_{p}}$ are stem fields of $m_{\alpha}(x)$, they are isomorphic.

Besides, $\#\mathbb{F}_p(\beta) = \#M = q$, so $\gamma^q = \gamma$ for all $\gamma \in \mathbb{F}_p(\beta)$, so $\mathbb{F}_p(\beta) \subseteq Z_q$; and actually $\mathbb{F}_p(\beta) = Z_q$ by cardinals.

Fundamental theorem of finite fields : proof (3/3)

Let K and L be finite fields with $\#K = q = p^d$ and $\#L = q' = p'^{d'}$.

If $K \subseteq L$, then $\#L = \#K^{[L:K]}$, so p' = p and $d \mid d'$.

Conversely, suppose that p' = p and $d \mid d'$. Then $Z_q \subseteq Z_{q'}$ in $\overline{\mathbb{F}_p}$. But up to isomorphism, $K = Z_q$, and $L = Z_{q'}$.

Example

 \mathbb{F}_4 and \mathbb{F}_8 are both extensions of $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, but \mathbb{F}_8 does not contain any copy of $\mathbb{F}_4!$

In fact, the smallest finite field containing both a copy of \mathbb{F}_4 and a copy of \mathbb{F}_8 is $\mathbb{F}_{64}.$

Finite fields 4/4: Explicit construction

Let $q = p^d$ be a prime power. We know that \mathbb{F}_q exists, and is an extension of \mathbb{F}_p of degree d $\rightsquigarrow \mathbb{F}_q = \mathbb{F}_p(\alpha)$ for some $\alpha \in \mathbb{F}_q$ $\rightsquigarrow m_{\alpha}(x) \in \mathbb{F}_p[x]$ is irreducible of degree d.

Conversely, if $P(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d, then

 $\mathbb{F}_p[x]/(P(x))$

is a finite field with $p^d = q$ elements.

Example: small extensions of \mathbb{F}_2

We have $\mathbb{F}_2 \simeq \mathbb{Z}/2\mathbb{Z}$.

To construct \mathbb{F}_4 , we need $P(x) \in \mathbb{F}_2[x]$ irreducible of deg 2. A polynomial of degree 2 is irreducible iff. it has no roots, and the only possible roots are $\{0, 1\} = \mathbb{F}_2$ $\rightsquigarrow P(x) = x^2 + x + 1$ (only choice!)

$$\rightsquigarrow$$
 $\mathbb{F}_4 \simeq \mathbb{F}_2[x]/(x^2+x+1).$

To construct \mathbb{F}_8 , we need $Q(x) \in \mathbb{F}_2[x]$ irreducible of deg 3. A polynomial of degree 3 is irreducible iff. it has no roots. $\rightsquigarrow Q(x) = x^3 + x + 1$ (other choice: $x^3 + x^2 + 1$) $\rightsquigarrow \mathbb{F}_8 \simeq \mathbb{F}_2[x]/(x^3 + x + 1)$.

Example: small extensions of \mathbb{F}_2

To construct \mathbb{F}_4 , we need $P(x) \in \mathbb{F}_2[x]$ irreducible of deg 2. $\rightsquigarrow P(x) = x^2 + x + 1$ (only choice!) $\rightsquigarrow \mathbb{F}_4 \simeq \mathbb{F}_2[x]/(x^2 + x + 1).$

To construct \mathbb{F}_8 , we need $Q(x) \in \mathbb{F}_2[x]$ irreducible of deg 3. $\rightsquigarrow \quad \mathbb{F}_8 \simeq \mathbb{F}_2[x]/(x^3 + x + 1).$

To construct \mathbb{F}_{16} , we need $R(x) \in \mathbb{F}_2[x]$ irreducible of deg 4. A polynomial of degree 4 is irreducible iff. it has no roots and is not the product of two irreducibles of degree 2. The only product of irreducibles of degree 2 is

$$(x^{2} + x + 1)^{2} = (x^{2})^{2} + x^{2} + 1^{2} = x^{4} + x^{2} + 1.$$

 \rightsquigarrow can take $R(x) = x^4 + x + 1$ (there are other choices)

$$\rightsquigarrow$$
 $\mathbb{F}_{16} \simeq \mathbb{F}_2[x]/(x^4 + x + 1).$

Polynomials and their roots

Fix $n \in \mathbb{N}$, and let K be a field.

Definition

A polynomial $F(x_1, \dots, x_n) \in K[x_1, \dots, x_n]$ is symmetric if it is invariant under any permutation of the variables x_1, \dots, x_n .

Example (n = 3)

$$x_1^2 + x_2^2 + x_3^2$$
 is a symmetric polynomial.
 $x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1$ is not.

Elementary symmetric polynomials

Definition

The elementary symmetric polynomials in n variables are

•
$$\sigma_1 = x_1 + x_2 + \cdots + x_n$$
,

• :
•
$$\sigma_j = \sum_{\substack{I \subseteq \{1, \cdots, n\} \\ \#I = j}} \prod_{i \in I} x_i,$$

•
$$\sigma_n = x_1 x_2 \cdots x_n$$
.

Example

For n = 4, the elementary symmetric polynomials are

•
$$\sigma_1 = x_1 + x_2 + x_3 + x_4$$
,

•
$$\sigma_2 = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$$
,

•
$$\sigma_3 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$$
,

•
$$\sigma_4 = x_1 x_2 x_3 x_4$$
.

Theorem (Proof omitted)

Let K be a field, and let $F(x_1, \dots, x_n) \in K[x_1, \dots, x_n]$. Then F is symmetric \iff F is a polynomial in $\sigma_1, \dots, \sigma_n$ with coefficients in K.

Remark

 \Leftarrow is obvious.

Example (n = 3)

 $F = x_1^2 + x_2^2 + x_3^2$ is symmetric, so it can be expressed in terms of σ_1 , σ_2 , σ_3 . Indeed, $\sigma_1^2 = (x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 = F + 2\sigma_2$ $\rightsquigarrow F = \sigma_1^2 - 2\sigma_2$.

Theorem (Vieta)

Let
$$F(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in K[x]$$
 have roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then $a_j = (-1)^j \sigma_j(\alpha_1, \dots, \alpha_n)$ for all j .

Proof.

Expand
$$F(x) = \prod_{j=1}^{n} (x - \alpha_j)$$
.

Theorem (Vieta)

Let
$$F(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in K[x]$$
 have roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then $a_j = (-1)^j \sigma_j(\alpha_1, \dots, \alpha_n)$ for all j .

Corollary

We can read the value of any symmetric polynomial in the roots of F(x) off its coefficients a_j , even if we do not know these roots.

Example

Let
$$F(x) = x^3 - x^2 + 2x + 8$$
 have roots $\alpha_1, \alpha_2, \alpha_3$. Then we have $\sigma_1 = \alpha_1 + \alpha_2 + \alpha_3 = 1$, $\sigma_2 = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3 = 2$, and $\sigma_3 = \alpha_1 \alpha_2 \alpha_3 = -8$.
Therefore, $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = \sigma_1^2 - 2\sigma_2 = -3$.

Theorem (Vieta)

Let
$$F(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in K[x]$$
 have roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then $a_j = (-1)^j \sigma_j(\alpha_1, \dots, \alpha_n)$ for all j .

Corollary

We can read the value of any symmetric polynomial in the roots of F(x) off its coefficients a_j , even if we do not know these roots.

Example

Let $F(x) = x^3 - x^2 + 2x + 8$ have roots $\alpha_1, \alpha_2, \alpha_3$. In contrast, we cannot evaluate $\alpha_1^2 \alpha_2 + \alpha_2^2 \alpha_3 + \alpha_3^2 \alpha_1$ that way. In fact, this value depends on the ordering of the roots!

Theorem (Vieta)

Let
$$F(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in K[x]$$
 have roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then $a_j = (-1)^j \sigma_j(\alpha_1, \dots, \alpha_n)$ for all j .

Corollary

We can read the value of any symmetric polynomial in the roots of F(x) off its coefficients a_j , even if we do not know these roots.

Corollary

The value of any symmetric polynomial in the roots with coefficients in K lies in K.

Resultants

Resultant: definition

Definition (Resultant of two polynomials)

Example

$$\operatorname{Res}(x^2-2,x^2+1) = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix} = 9.$$

Resultant: properties

Theorem (Proof admitted)

Let K be a field, and
$$A(x), B(x) \in K[x]$$
.
If we have (over K or an extension)
 $A = a \prod_{j=1}^{\deg A} (x - \alpha_j)$ and $B = b \prod_{k=1}^{\deg B} (x - \beta_k)$, then
 $\operatorname{Res}(A, B) = a^{\deg B} \prod_{j=1}^{\deg A} B(\alpha_j) = a^{\deg B} b^{\deg A} \prod_{j=1}^{\deg A} \prod_{k=1}^{\deg B} (\alpha_j - \beta_k)$
 $= (-1)^{\deg A \deg B} b^{\deg A} \prod_{k=1}^{\deg B} A(\beta_k) = (-1)^{\deg A \deg B} \operatorname{Res}(B, A).$

Example ($K = \mathbb{Q}$)

Let
$$A = x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}), B = x^2 + 1 = (x - i)(x + i)$$
. Then
 $\operatorname{Res}(A, B) = B(\sqrt{2})B(-\sqrt{2}) = A(i)A(-i)$
 $= (\sqrt{2} - i)(\sqrt{2} + i)(-\sqrt{2} - i)(-\sqrt{2} + i) = 9.$

Resultant: properties

Theorem (Proof admitted)

Let K be a field, and
$$A(x), B(x) \in K[x]$$
.
If we have (over K or an extension)
 $A = a \prod_{j=1}^{\deg A} (x - \alpha_j)$ and $B = b \prod_{k=1}^{\deg B} (x - \beta_k)$, then
 $\operatorname{Res}(A, B) = a^{\deg B} \prod_{j=1}^{\deg A} B(\alpha_j) = a^{\deg B} b^{\deg A} \prod_{j=1}^{\deg A} \prod_{k=1}^{\deg B} (\alpha_j - \beta_k)$
 $= (-1)^{\deg A \deg B} b^{\deg A} \prod_{k=1}^{\deg B} A(\beta_k) = (-1)^{\deg A \deg B} \operatorname{Res}(B, A).$

Corollary

 $\operatorname{Res}(A, B) = 0 \iff A \text{ and } B \text{ have a common root in } \overline{K} \iff A \text{ and } B \text{ have a common nontrivial factor over } K.$

Theorem

Let $K \subseteq L$ be fields, and let $\alpha, \beta \in L$. If α and β are algebraic over K, then so are $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$, and α/β ($\beta \neq 0$).

Non-constructive proof.

 α, β alg. $/K \rightsquigarrow minpoly A(x), B(x) \in K[x]$. Then $[K(\alpha) : K] = \deg A < \infty$, and $[K(\alpha, \beta) : K(\alpha)] \leq \deg B < \infty$ since the minpoly of β over $K(\alpha)$ divides B(x). By tower law, $[K(\alpha, \beta) : K] < \infty$, so $K(\alpha, \beta)$ is an algebraic extension of K.

Application: preservation of algebraicness

Theorem

Let $K \subseteq L$ be fields, and let $\alpha, \beta \in L$. If α and β are algebraic over K, then so are $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$, and α/β ($\beta \neq 0$).

Constructive proof with resultants.

$$\begin{array}{l} \alpha,\beta \text{ alg. } / \ K \rightsquigarrow \text{ minpoly } A(x), B(x) \in K[x]. \text{ Factor (over } \overline{L}) \\ A(x) = \prod_{j=1}^{m} (x - \alpha_j), \quad B(x) = \prod_{k=1}^{n} (x - \beta_k), \\ \text{where } \alpha = \alpha_1 \text{ and } \beta = \beta_1, \text{ and view } A(y), B(x - y) \in K[x][y]. \\ \text{Then } C(x) = \text{Res } (A(y), B(x - y)) \in K[x] \text{ satisfies} \\ C(x) = \prod_{j=1}^{m} B(x - y)|_{y = \alpha_j} = \prod_{j=1}^{m} B(x - \alpha_j) = \prod_{j=1}^{m} \prod_{k=1}^{n} (x - \alpha_j - \beta_k), \\ \text{so } \alpha + \beta \text{ root of } C(x) \rightsquigarrow \text{ algebraic } / \ K. \\ \text{Same idea for } \alpha - \beta, \ \alpha\beta \text{ and } \alpha/\beta. \end{array}$$

Application: preservation of algebraicness

Theorem

Let $K \subseteq L$ be fields, and let $\alpha, \beta \in L$. If α and β are algebraic over K, then so are $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$, and α/β ($\beta \neq 0$).

Example

 $\alpha = \sqrt{2}, \ \beta = \sqrt{3}$ algebraic / $\mathbb{Q} \rightsquigarrow \alpha + \beta$ algebraic / \mathbb{Q} . More specifically, since A(x) = x - 2 and B(x) = x - 3, $\alpha + \beta$ is a root of $\operatorname{Res}_{v}(y^{2}-2,(x-y)^{2}-3) = \operatorname{Res}_{v}(y^{2}-2,y^{2}-2xy+x^{2}-3)$ $= \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \\ 1 & -2x & x^2 - 3 & 0 \\ 0 & 1 & -2x & x^2 - 3 \end{vmatrix}$ $= x^4 - 10x^2 - 1 \in \mathbb{Q}[x].$

Application: preservation of algebraicness

Theorem

Let $K \subseteq L$ be fields, and let $\alpha, \beta \in L$. If α and β are algebraic over K, then so are $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$, and α/β ($\beta \neq 0$).

Example

$$\mathcal{A} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraic over } \mathbb{Q} \}$$

is a subfield of \mathbb{C} ($\rightsquigarrow \mathcal{A} = \overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q}).

Discriminants

Reminder on multiple roots

Let
$$K \subseteq L$$
 be fields, $F(x) \in K[x]$, and $\alpha \in L$.

Lemma

$$F(\alpha) = 0 \iff F(x) = (x - \alpha)G(x)$$
 for some $G(x) \in L[x]$.

Proof.

Euclidean-divide F(x) by $x - \alpha$ in L[x]:

$$F(x) = (x - \alpha)Q(x) + R(x)$$

where deg $R < deg(x - \alpha)$ so R is constant.

Evaluate at $x = \alpha \rightsquigarrow R = F(\alpha)$.

Reminder on multiple roots

Let $K \subseteq L$ be fields, $F(x) \in K[x]$, and $\alpha \in L$.

Definition (Multiple root)

$$\alpha$$
 is a multiple root of $F(x)$ if $F(x) = (x - \alpha)^2 H(x)$ for some $\overline{H(x) \in L[x]}$.

Proposition (Derivatives detect multiple roots)

Let $\alpha \in L$ be a root of F(x). Then α is a multiple root of $F(x) \iff F'(\alpha) = 0$.

Proof.

$$F(x) = (x - \alpha)G(x) \rightsquigarrow F'(x) = G(x) + (x - \alpha)G'(x), \text{ so}$$

$$F'(\alpha) = 0 \iff G(\alpha) = 0 \iff G(x) = (x - \alpha)H(x) \text{ for}$$

some $H(x) \in L[x].$

Discriminant: definition

Definition

Let $A(x) \in K[x]$ have degree $n \in \mathbb{N}$ and leading coefficient $a \in K$. Its discriminant is

disc
$$A = \frac{(-1)^{n(n-1)/2}}{a} \operatorname{Res}(A, A') \in K.$$

Example

Let $A(x) = ax^2 + bx + c$, $a \neq 0$. Then A'(x) = 2ax + b, so that

$$\operatorname{Res}(A, A') = \begin{vmatrix} a & b & c \\ 2a & b & 0 \\ 0 & 2a & b \end{vmatrix} = 4a^2c - ab^2,$$
$$\rightsquigarrow \quad \operatorname{disc} A = \frac{-1}{a} \operatorname{Res}(A, A') = b^2 - 4ac.$$

Discriminant: properties

Theorem

Let
$$A(x) \in K[x]$$
 have degree $n \in \mathbb{N}$, leading coefficient $a \in K$,
and roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then
 $\operatorname{disc} A = (-1)^{n(n-1)/2} a^{n-2} \prod_{j=1}^n A'(\alpha_j)$
 $= (-1)^{n(n-1)/2} a^{2n-2} \prod_{j \neq k} (\alpha_j - \alpha_k)$
 $= a^{2n-2} \prod_{j < k} (\alpha_j - \alpha_k)^2.$

Proof.

Since
$$A(x) = a \prod_{j=1}^{n} (x - \alpha_j)$$
, we have $A'(x) = a \sum_{j=1}^{n} \prod_{k \neq j} (x - \alpha_k)$
 $\rightsquigarrow A'(\alpha_j) = a \prod_{k \neq j} (\alpha_j - \alpha_k)$.
Discriminant: properties

Theorem

Let
$$A(x) \in K[x]$$
 have degree $n \in \mathbb{N}$, leading coefficient $a \in K$,
and roots $\alpha_1, \dots, \alpha_n \in \overline{K}$. Then
 $\operatorname{disc} A = (-1)^{n(n-1)/2} a^{n-2} \prod_{j=1}^n A'(\alpha_j)$
 $= (-1)^{n(n-1)/2} a^{2n-2} \prod_{j \neq k} (\alpha_j - \alpha_k)$
 $= a^{2n-2} \prod_{j < k} (\alpha_j - \alpha_k)^2.$

Corollary

$$A(x)$$
 has multiple roots in $\overline{K} \iff \text{disc } A = 0$.

Corollary

A(x) has multiple roots in $\overline{K} \iff \text{disc } A = 0$.

Definition (Separable polynomial)

A polynomial $A(x) \in K[x]$ is <u>separable</u> if disc $A \neq 0$, and <u>inseparable</u> if disc A = 0.